Characterization of undoped-BaSi$_2$ on textured Si (001) substrate grown by molecular beam epitaxy

Univ. Tsukuba 1, Nagoya Univ. 2, T. Deng 1, R. Takabe 1, S. Yachi 1, Z. Xu 1, M. Emha Bayu 1, K. Toko 1, N. Usami 2, T. Suemasu 1

E-mail: bk201630101@s.bk.tsukuba.ac.jp

Introduction Barium disilicide (BaSi$_2$) has attractive features for solar cell application such as a suitable band [1], and a large minority-carrier lifetime ($\tau \sim 10$ μs) [2] and a large minority-carrier diffusion length ($L \sim 10$ μm) [3]. Power conversion efficiency (η) was expected to be larger than 25% only in a 2-μm-thick BaSi$_2$ pn junction diode [4]. To ensure both light-trapping and epitaxy of BaSi$_2$ on Si(111) faces, textured Si(001) substrates with Si(111) faces were formed. In this study, we attempted to grow BaSi$_2$ on such a textured Si(001) substrate, and compared with the results obtained for BaSi$_2$ on Si(111).

Experiment Approximately 400 nm-thick undoped-BaSi$_2$ was grown by molecular beam epitaxy (MBE) for 5 hrs on textured Si(001) or a flat Si(111) substrate after reactive deposition epitaxy process, which was used to control the crystal orientation of BaSi$_2$ over layers. We employed the optimum growth condition for BaSi$_2$ on Si(111). Then, 3-nm-thick a-Si was prepared over the BaSi$_2$ layers as a capping layer to reduce oxidation of the film. The crystal orientation of BaSi$_2$ was investigated by XRD pole figure measurement for textured substrate with $2\theta = 62.42^\circ$. Moreover, reflectivity of the film was measured by RU-60N diffusion reflection test unit.

Results & Discussions Schematic diagram of textured Si(001) substrate is shown in Fig. 1(a), the texture was constructed by four Si(111)-orientated faces. Fig. 1(b) shows the XRD pole figure image with $2\theta = 62.42^\circ$, corresponding to the diffraction angle of BaSi$_2$(600). The fact that four points existed on the map indicates that a-axis of BaSi$_2$ was oriented normal to the (111)-oriented texture on the Si(001) substrate. Besides, reflectivity of the films on flat and textured substrate was compared in Fig. 2. It is obvious that the reflection of the film grown on the textured substrate was much lower than that on the flat one, indicating that light trapping took place. Based on these results, Si(001) textured substrates have a potential for BaSi$_2$ solar cell applications.

Acknowledgments This work was financially supported in part by JST-CREST and JSPS (15H02237).

Fig. 1. (a) Schematic diagram of textured Si(001) substrate with (111) faces. (b) X-ray pole figure image with $2\theta = 62.42^\circ$

Fig. 2. Reflectance spectrum of undoped-BaSi$_2$ on flat substrate and textured substrate