Fabrication of nitrogen-doped BaSi₂ films on Si(111) by molecular beam epitaxy

Univ. Tsukuba ¹°Z. Xu¹, T.Deng¹, R. Takabe¹, M. Emha Bayu¹, K.Toko¹, T.Suemasu¹,

E-mail: s1620372@u.tsukuba.ac.jp

Introduction BaSi₂ is a good candidate for future solar cell material, because its band gap is 1.3 eV, suitable for the solar spectrum. Besides, it also has a large absorption coefficient 3×10^4 cm⁻¹ at 1.5 eV [1]. The minority-carrier diffusion length of undoped BaSi₂ is approximately 10 μ m [2]. On the basis of these results, we aim to realize BaSi2 pn junction solar cells. For n-type BaSi2, we once attained the electron concentration of 10²⁰ cm⁻³ for Sb-doped BaSi₂[3], whereas Sb is easy to diffuse into other layers [4], which might destroy a sharp pn junction required for solar cell. Therefore, exploring alternative donor impurity is very important. BaSi₂ films doped with a Group 15th element (P, As, Sb) except N have been grown, which all exhibit the n-type conductivity. In this study, we attempted to form N-doped BaSi₂ films and characterized their properties.

Experiment We used MBE method to grow N-doped BaSi₂ films on high resistivity p-Si (111) $(\rho=1000-10000 \ \Omega \cdot cm)$. First, we deposited Ba on the hot Si (111) substrate for 5 min as a template layer by reactive deposition epitaxy (RDE). Second, we co-deposited Ba, Si and nitrogen on the template at 580 °C. The radio frequency (RF) plasma power for nitrogen was set to 70 W. In order to change the amount of N, we varied the beam equivalent pressure (BEP) of N₂ as 1×10^{-4} to 5×10^{-3} Pa. Reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) with Cu K α radiation were performed to evaluate the crystal quality of BaSi₂. The carrier concentration of N-doped BaSi₂ was measured by the Van der Pauw method.

Results & Discussions Figures 1 show the RHEED pattern observed after (a) RDE and (b) MBE at BEP = 5×10^{-3} Pa. Sharp streaky patterns from BaSi₂ are observed. Figure 2 shows the θ -2 θ XRD pattern of the same sample. Diffraction peaks of a-axis-oriented BaSi₂ such as (200), (400), and (600) were found, meaning that we succeeded to fabricate N-doped $BaSi_2$ epitaxially on Si (111). Figure 3 shows the dependence of carrier type and carrier concentration of the grown films. When BEP was around 10^{-4} Pa, the grown film showed the n-type conductivity with the electron concentration of the order of 10^{17} cm⁻³. For BEP > 5×10⁻³ Pa, however, N-doped BaSi₂ showed the p-type conductivity, differently from our prediction, and the hole concentration exceeded 10^{18} cm⁻³ with increasing BEP. Further studies are mandatory to understand what happens in N-doped BaSi₂. Acknowledgments This work was financially supported in part by JST-CREST and JSPS (15H02237).

Reference [1] K. Toh, et al., Jpn. J. Appl. Phys. 50 (2011) 068001. [2] M. Baba, et al., J. Cryst. Growth 348 (2012) 75. [3] M Kobayashi, et al., Appl. Phys. Express 1 (2008) 051403. [4] W. Du et al., Jpn. J. Appl. Phys. 51 (2012) 04DP01.

Fig 2 θ -2 θ XRD pattern of BaSi₂.

Fig 3 Dependence of carrier type and carrier concentration of N-doped BaSi₂ on N₂ BEP.