静電塗布法を用いた有機薄膜成膜におけるノズル先端形状の影響

Effect of geometrical shape of nozzle tip on electrospray deposition of organic thin film

上智大学理工 ¹, 上智ナノテクセンター² 上田 裕之 ¹, 竹内 啓太 ¹, 菊池 昭彦 ^{1,2} Sophia Univ.¹, Sophia Nanotech Research Center² Hiroyuki Ueda¹, Keita Takeuchi¹, Akihiko Kikuchi^{1,2} E-mail: kikuchi@sophia.ac.jp

背景:静電塗布法(ESD)はウェットプロセスでの 有機薄膜半導体成膜技術の一つとして期待されて いる。最近、我々は、ESD 法で液糸が複数に分裂 するマルチジェット(MJ)モードを用いると直径 1µm 以下の小さく均一な粒子を生成でき、表面粗 さ RMS 値 2.5nm 程度の平坦性に優れた有機薄膜 を堆積できることを報告した^[1]。しかし MJ モー ドは、円筒状の金属ノズル端部に発生する複数の 液糸の位置制御が困難であり、その不安定性の解 決が課題である。本研究では、ノズル先端に複数 の突起を形成して電界集中により液糸の位置を固 定し、より小さい粒子の噴霧と MJ モードの安定 化を図った^[2]。また、先端部の突起数が異なるノズ ルで低分子有機材料 Alq3を堆積し、表面モフォロ ジーの比較も行った。

実験と結果: 22 番ゲージ(内径=0.41mm,外径 =0.72mm)の金属ノズルを用いて、Fig.1(a)~(e)に 示す先端突起数が 0(平滑針)、1、2、3、4 本であ る5種類の金属ノズルを作製した。これらの金属 ノズルを用いて ITO コートガラス基板上に Alg3 溶液を ESD 法で1分間噴霧した。溶液はクロロ ベンゼン(CB)にジメチルスルホキシド(DMSO)を 20vol%混合した溶媒にAlq3を0.5mg/mlの濃度で 溶解させた。ESD では、同一の溶液供給速度とノ ズル電圧において液糸数が先端突起数と等しくな る条件(先端(a)と(b)は液糸数1、(c)は2、(d)は3、 (e)は 4) を用いた。Alq3 溶液噴霧後のサンプル表 面を電界放射型走査型電子顕微鏡(FE-SEM)で観 察し、Alq3堆積痕の直径分布を評価した。図2に 溶液噴霧後の基板表面の FE-SEM 像、粒子堆積痕 直径のヒストグラム (左軸)、および堆積痕の合計 面積に対する各直径の粒子が占有する割合(右軸) を示す。Fig.2(a)~(e)は、先端形状(a)~(e)に対応 している。また、有機薄膜の成膜におけるノズル 先端の突起数の影響を調べるため、ノズル(a)と(e) を用いて厚さ 60nm の Alg3 膜を成膜し、成膜後 の表面を光学顕微鏡と白色干渉顕微鏡で評価した。 **考察**:ノズル先端の突起数(液糸の本数)が 0、1、2、 3、4 と増えるに伴い、粒子堆積痕の最大直径は 16.1、5.3、4.1、2.7、2.3µm と単調に減少し、2µm 以下の小さい粒子堆積痕による面積占有率は29、 38、63、66、83%と増加した。ノズル先端の突起 数(液糸の本数)の増加に伴う最大粒子径の減少と 直径 2µm 以下の堆積痕の増加は、液糸1本当たり

の溶液流量の減少と電界集中効果によって生成される液滴サイズが減少したためと考えられる。また、Alq3 膜成膜後表面の表面粗さ RMS 値はノズル(a)を用いた場合に32.5nm であったのに対し、 ノズル(e)を用いた場合には 6.8nm と著しく改善 した。このことからもノズル先端の突起数の増加 は、より小さい粒子の噴霧と MJ モードの安定化、 さらにはより平坦な有機薄膜の成膜に効果的であ ることが確認された。

<u>参考文献</u> [1] Y. Niinuma, Y. Takatsuka, R. Terada, H. Ueda, and A. Kikuchi, Japanese Journal of Applied Physics 55(2016)04EL01. [2] M. Duby, W. Deng, K. Kim, T. Gomez, A. Gomez, Aerosol Science 37(2006) 306.

<u>謝辞</u>本研究の一部は科研費挑戦的萌芽研究 16K14260の援助を受けて行われた。

Fig. 1. Schematic of processed nozzle tip (flat-end (a), the number of protrusions 1 (b), 2 (c), 3 (d), 4 (e))

Fig. 2. SEM images of deposition marks ratio of diameters of deposition marks (left axis) and ratio of area occupancy of each diameter for entire (right axis) of Alq₃ solution on ITO