高速 SiC レーザスライシング技術の開発 Development of high-speed SiC laser slicing technology 株式会社ディスコ °平田 和也,西野 曜子,森重 幸雄,高橋 邦充

DISCO Corporation, °Kazuya Hirata, Yoko Nishino, Yukio Morishige, Kunimitsu Takahashi

1. 緒言

SiC 材料は、次世代パワーデバイス用材料として注目され 多くの研究が行われている。パワーデバイスに一般的に利用 される 4H-SiC の物性値は、従来からパワーデバイスに用い られている Si と比較すると、バンドギャップは3倍、絶縁破 壊電圧は10倍、熱伝導率は3倍の大きな値をもつ。この特性 により、Si パワーデバイスに比べ、電流の低減、デバイスの 高温動作や導通損失およびスイッチング損失の大幅な低減を 可能とする[1]。

上記の特徴をもつ SiC は、ウェーハ製造の観点でみた場合、 高硬度(モース硬度 9)の難削材であるため加工に関わるコ ストが高いという問題がある。特にインゴットからウェーハ 化するためのスライシング加工は特に顕著であり、遊離砥粒 ワイヤソーによるスライシングの加工時間は、6inch インゴッ トで100時間を要する。さらに加工により生じたうねりを除 去するため両面ラップ研削の約20時間も必要となる。また、 スライシング加工に伴う材料損失は、スライシング工程で約 200um、両面ラップ研削で100um がウェーハ化のプロセスで 失われる。仕上げ厚み350 µm のウェーハを製作する場合、 SiC インゴットの材料の46%を無駄にするため、ウェーハ価 格は非常に高くなり、SiC パワーデバイスの市場への普及の 妨げのひとつとなっている。

本報告では、従来の課題を解決した高スループットで材料 損失を大幅に低減した、新しい加工原理に基づくレーザスラ イス加工技術(KABRAプロセス)について述べる。

2. 実験方法

パルスレーザから出射されたビームは適当なサイズに成形、 伝送される。成形ビームは球面収差を補正する機能を搭載し た集光光学系により集光され SiC ウェーハ内部に特異の KABRA 層 (Key Amorphous-Black Repetitive Absorption) を形 成する。加工実験には、厚さ 500µm の 6inch の SiC ウェーハ

Fig.1. Optical microscopic images of top view (a) and cross sectional view (b) of laser processed line.

を用いた。レーザの走査間隔を250µmに設定し、ウェーハ全 面を走査した後、マニュアル剥離した。

3. 実験結果及び考察

Fig.1.に、光学顕微鏡を用いて観察された加工痕の上面写真 (a)と断面写真(b)を示す。上面写真では、レーザ照射により形 成された中心部のラインと、その上下に幅広い干渉縞が形成 されているのがわかる。断面写真では、レーザ照射部は白く 扁平な部分である。その側方にはクラックが形成されており、 レーザ照射領域の 10 倍以上に広がり、上面から観察される 干渉縞がクラック形成により生じたことが理解できる。レー ザ照射部に生じた領域は、レーザ集光で生じる従来の内部改 質層[2]とは異なり、レーザ照射方向と垂直方向(横方向)に 扁平な形状(KABRA 層)となることがこのプロセスの大き な特徴である。

Fig.2.に 6inch ウェーハの KABRA プロセスによりスライシ ングしたウェーハの写真を示す。ウェーハ全面を走査するた めに必要な時間は 12 分であった。また、スライシングと研削 の研削損失は 120um であり、遊離砥粒ワイヤソーの約 1/3 で あった。

4. 結言

偏平な熱分解領域をSiCの内部に形成し、熱膨張によりSiC 劈開面にそって非常に大きなクラック層を生成させる KABRA プロセスを開発した。これにより従来にない高スル ープット、低材料損失なスライシング加工を実現した。

5. 参考文献

- M. Bhatnagar, *IEEE Transactions on Electron Devices*, 40, 3, 645(1993).
- [2] E. Ohmura et al, Journal of Achievements in Materials and Manufacturing Engineering, 17, 1, 381 (2006)

Fig.2. Laser slicing result of 6inch SiC waver using KABRA process.