ワイヤーグリッド偏光ピンホールを用いた高分解能点回折干渉顕微鏡 High-resolution point-diffraction interference microscope using a wire grid polarization pinhole

大阪府立大学大学院工¹, ^O(M2)原田 和眞¹, 水谷 彰夫¹, 菊田 久雄¹

Graduate school of Engineering, Osaka Pref. Univ.¹, Kazuma Harada¹, Akio Mizutani¹, Hisao Kikuta¹

E-mail: sv101056@edu.osakafu-u.ac.jp

1.はじめに

細胞を非染色で生きたまま透明物体の位相像として 観察する顕微鏡として、デジタルホログラフィック顕 微鏡に関心が高まっている.デジタルホログラフィ ー・システムの多くは参照光と物体光が別光路を通る マッハツェンダー干渉計に基づくため、光学系が複雑 で振動や空気の揺らぎなどの外乱に弱い欠点がある.

外乱に強い共通光路型の干渉計として,点回折干渉 計(PDI)が報告されている. PDI に位相シフト法を導 入して位相像を定量的に得るには,点回折板のピンホ ール(PH)部分を通る参照光(0 次光)と残りの部分を通 る物体光との間に位相差を与える必要があり,Ramírez らは点回折板に液晶空間フィルタを用いることを提案 している¹⁾.しかし,液晶セルの厚さの制限から,PH のサイズは数十 µm と大きくなる.PDI を光学顕微鏡 に適用するには,光学系のエアリーディスクと同等の PH が必要になり,液晶で実現することは難しい.

我々は、PH 内部と外部で金属細線の方向を互いに 直交させたワイヤーグリッド 偏光ピンホール (WGPPH)を用いて、PDI を光学顕微鏡に適用させるこ とを提案した²⁾. この際作製した WGPPH は PH 径が エアリーディスク径と同程度の 10 μm であったもの の、素子面積が1 mm 角の小さなモノであり、顕微鏡 対物レンズの NA を制限して高い解像度が得られなか った.

本研究では、PH 径がより小さく(5 µm),素子面積 がより大きい(10 mm 角)WGPPHを作製し、これを PDI 顕微鏡システムに組み込むことで、対物レンズの 本来の分解能に近い解像度をもつ顕微鏡を実現した. また、デジタルホログラフィーの手法を用いて、デフ ォーカスの位相像から、フォーカス像を算出できるこ とも実験により示した.

2.WGPPH を用いた高分解能点回折干渉顕微鏡

Fig.1(a), (b)に WGPPH を用いた高分解能点回折干渉 顕微鏡の光学系, WGPPH の PH 周辺の走査型電子顕微 鏡画像を示す.平行光を透明試料に入射し,無限遠焦 点系の顕微鏡対物レンズ MO(×20)とレンズ L₁により, L₁の後ろ焦点位置に試料拡大像がつくられる.レンズ L₂の焦点位置に WGPPH を配置する.

WGPPH は電子線描画,反応性イオンエッチング, アルミニウムの真空蒸着により作製した. PH 径はレ ンズ L_2 でのエアリーディスク径(4.4 μ m)とほぼ等しい 5.0 μ m であり,素子面積は対物レンズ (NA0.4)の有 効径 7.9 mm より大きい 10 mm 角である.

Fig.1 Optical system of the high-resolution point-diffraction interference microscope using a wire grid polarization pinhole: (a) optical system, (b) a magnified view of the central part of the 10×10 mm² WGPPH レンズ L₃ でイメージセンサ上に物体像が形成され るが, 偏光板 P₂によって物体光と参照光が干渉した強 度画像が得られる. 偏光位相シフターによって物体光 と参照光の間に 0°, 90°, 180°, 270°の位相差を付けたと きの強度画像 I₀, I₉₀, I₁₈₀, I₂₇₀から、試料の位相分布と強 度分布が算出できる.

このシステムでは, 試料が対物レンズに対してデフ オーカス位置にあっても, 得られた複素振幅分布から フォーカス位置での複素振幅を計算で求められる.

3.微小位相物体の観察

ガラス基板上に約 200 nm (0.17π rad)の段差をもつ直 径 10 μm の丸,一辺 10 μm と 20 μm の四角の透明試料 を観察した. Fig.2 に観察された位相像及び位相分布の 断面を示す. Fig.2(b)から透明試料の段差を算出できて いることがわかる. 横方向分解能を Fig.2(b)に示すよう に 10 μm 角パターンの段差 0.17π rad に相当する側壁部 分より求めると,本顕微鏡は約 1.7 μm の横方向分解能 をもつ. この値は MO(×20)のもつ理論分解能約 1.0 μm と同程度である.

position Fig.2 Measurement results of 10 and 20 μm-size phase objects: (a) phase distribution, (b) Cross section (A-A') of the phase distribution

Fig.3 は試料を対物レンズの焦点位置から 0.5mm ず れたデフォーカス位置に配置した場合に算出された位 相分布とその断面である.平面波展開法によって,フ ォーカス位置で位相分布とその断面を計算で求めた結 果を Fig.4 に示す.デフォーカスされた像からデジタ ルフォーカスによって鮮明なエッジをもつ位相像が得 られていることがわかる.

Fig.4 Measurement results of digital-focused 10 and 20 µm-size phase objects: (a) phase distribution, (b) Cross section (C-C') of the phase distribution 参考文献

- Claudio Ramírez et al., "Point diffraction interferometer with a liquid crystal monopixel", 8116-8125, Vol. 21, No. 7 OPTICS EXPRESS(2013)
- 2)野上教ら, "ワイヤーグリッド型偏光ピンホールを用いた点回折干渉顕微 鏡", 14pP11, OPJ (2013)