Magnetic Tunnel Junction with Amorphous NiFeSiB Electrode for Highly Sensitive Magnetic Field Sensor

^oD. Kato¹, M. Oogane¹, K. Fujiwara¹, J. Jono², H. Naganuma¹, M. Tsuchida², and Y. Ando¹

(Tohoku Univ.¹, Konica Minolta Inc.²)

E-mail: kato@mlab.apph.tohoku.ac.jp

Magnetic tunnel junctions (MTJs) based magnetic field sensors are promising candidate to replace SQUID, because of small size, low power consumption, and room temperature operation. A high sensitivity (=TMR ratio/ $2H_k$, H_k is magnetic anisotropy field) is required to detect a very small magnetic field such as bio-magnetic field ($10^{-8} - 10^{-10}$ Oe). In addition, we need to reduce noise of the MTJ sensors at low-frequency, because typical bio-magnetic field is below several hundred Hz. In previous work, we achieved the detectivity of 4 x 10⁻⁴ Oe in a single MTJ with amorphous CoFeSiB electrode [1]. However, higher detectivity is necessary for detection of bio-magnetic field. In low frequency, the 1/f noise is dominant and the noise can be reduced by using the soft magnetic materials with high saturation magnetization (M_s) [2]. In this study, we investigated the TMR properties in MTJs with amorphous NiFeSiB electrode with a higher M_s than CoFeSiB.

The films were deposited onto thermally oxidized Si wafers using an ultra-high-vacuum magnetron sputtering system ($P_{\text{base}} < 3.0 \times 10^{-6} \text{ Pa}$). The stacking structures of the MTJ films were Si/SiO₂/Ta(5)/Ru(10)/Ta(5)/Ni₁₆Fe₆₂Si₈B₁₄(30)/Ru(t_{Ru})/Co₄₀Fe₄₀B₂₀(3)/MgO(2.5)/Co₄₀Fe₄₀B₂₀(3)/Ru (0.9)/Co₇₅Fe₂₅(5)/Ir₂₂Mn₇₈(10)/Ta(5) (in nm). The magneto-resistance properties were measured by the DC four-probe method at RT in magnetic shield room.

The measured M_s of NiFeSiB was 1200 emu/cc (cf. 650 emu/cc in CoFeSiB). Fig. 1 shows Ru thickness dependence of TMR for various annealing temperature (T_a) of MTJs. TMR ratio increased with annealing temperature. The maximum TMR ratio of 215% was observed at $t_{Ru} = 0.7$ nm and the TMR ratio was higher than those in MTJs with NiFe and CoFeSiB electrodes. We will show the magnetic sensor performance in the MTJs with NiFeSiB electrode.

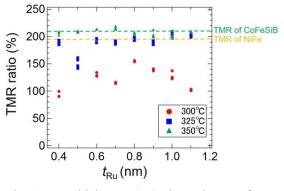


Fig. 1 Ru thickness (t_{Ru}) dependence of TMR ratio in MTJs with NiFeSiB electrode

This work was supported by the S-Innovation

program, Japan Science and Technology Agency (JST), Center of Innovative Integrated Electronic Systems, and Grant-in-Aid for JSPS Fellows 15J02067

[1] D. Kato et al., 63rd JSAP spring meeting, 19p-P1-51

[2] W. F. Egelhoff Jr. et al., Sensors and Actuators A 155 (2009) 217 - 225