Observation of perpendicular exchange bias in Ir-doped Fe₂O₃/Co thin film system

S. Ye¹, S. P. Pati¹, Y. Shiokawa¹, M. Al-Mahdawi¹, T. Nozaki¹, and M. Sahashi^{1, 2}

¹Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan ²ImPACT Program, Japan Science and Technology Agency, Tokyo 102-0076, Japan

The exchange coupling phenomenon at the interface between a ferromagnet (FM) and an antiferromagnet (AFM) has possible applications in spintronic devices. α -Fe₂O₃ (Hematite) is the most stable iron oxide, and it has high Neel temperature (T_N) of 955 K. Thus α -Fe₂O₃/FM system is expected to work at high temperature with high stability. Till now, perpendicular was not observed for α -Fe₂O₃ /FM thin film system; only H_{ex} for in-plane direction was reported [1]. Because the spin direction of α -Fe₂O₃ lies parallel ab-plane above Morin to temperature $T_M \sim 263$ K, it was difficult to observe perpendicular Hex. On the other hand, in the present spintronic devices, spin direction perpendicular to the film plane is necessary. Our group successfully enhanced T_M of α -Fe₂O₃ thin film to around 400 K by Ir doping [2]. In this work, we fabricated the Ir-doped α -Fe₂O₃ (Ir-Fe₂O₃)/Co exchange coupled thin film and investigated its dependence on Ir-Fe₂O₃ thickness. The sample structures are c-Al₂O₃ substrate/Ir-Fe₂O₃ x/Co 1/Pt 5 (nm). The perpendicular H_{ex} was observed in this thin film system even for 1-nmthick Ir-Fe₂O₃ film. Fig. 1 shows temperature dependence of perpendicular Hex and Hc of c-Al₂O₃ substrate/Ir-Fe₂O₃

5/Co 1/Pt 5 (nm). Details of thickness dependence will be reported.

This work was partly funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Japan Government).

[1] J. Dho et al., Phys. Rev. B, 71 (2005) 180402.

[2] N. Shimomura et al., J. Appl. Phys., 117 (2015) 17C736.

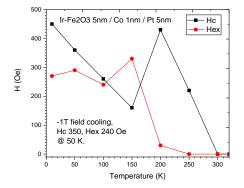


Fig. 1 Temperature dependence of perpendicular exchange bias H_{ex} and coercivity H_c of c-Al₂O₃ substrate/Ir-Fe₂O₃ 5/Co 1/Pt 5 (nm) thin film system.