Propagating Properties Depending on 80NiFe-Films Thickness for Pulse Laser-Induced Spin Wave

A. Kamimaki¹, Y. Sasaki¹, S. Iihama², Y. Ando² and S. Mizukami¹

(1. WPI-AIMR, Tohoku Univ. 2. Dept. of Appl. Physics, Tohoku Univ.)

E-mail: a.kamimaki17@mlab.apph.tohoku.ac.jp

Propagating spin wave (PSW) has been mainly studied by using micro-wave antenna for realizing future’s spin-based logic devices [1]. Nowadays, pulse laser-induced PSW is actively being investigated in magnetic metals and insulators [2, 3]. In magnetic metals, which have much smaller propagation length, an excitation mechanism and detail properties of PSW are not well understood. In particular, excitation mechanism has a fundamental issue because of heating effect. Here, we report propagating properties depending on 80NiFe-(Py)-films thickness for pulse laser-induced spin wave.

The Py films (thickness d = 20, 50 and 100 nm) were prepared by magnetron sputtering method. PSW was observed by space-and-time resolved magneto-optical Kerr effect (STR-MOKE) [3]. The power of pump and probe beam are about 15 and 5 mW respectively. The external magnetic field $\mu_0 H_0 = 0.3$ T was applied with $\theta_0 = 5$ deg., where θ_0 is measured from normal direction of the film surface. PSW is detected in the direction perpendicular to the magnetization. Fig. 1 shows the space-time mapping of pump-laser induced change in Kerr rotation angle $\Delta \theta_k$. The PSW was clearly observed, which exhibit Gaussian-type wave packets. The propagation length λ, which is shown in Fig. 2 as a function of the group velocity v_g, was estimated. They are consistent with those expected from the relation, $\lambda = v_g \tau$, with life time τ which was separately determined (dashed-line in Fig. 2).

This work was supported by KAKENHI (Nano Spin Conversion Science, No26103004) and the center of Spintronics Research Network. A. K and Y. S thank to the GP-Spin program and S. I thanks to the Grant-in-Aid for JSPS Fellows (No. 2-7881).

Fig. 1: Space-time mapping of pump-laser induced change in Kerr rotation angle $\Delta \theta_k$. Δt is pump-probe delay time, and x is scanning direction.

Fig. 2: Propagation length λ vs group velocity v_g with different thickness d. The dashed line is calculated with $\tau = 1350$ ps.