YA103単結晶中のEu³⁺からのフォトルミネセンスの原因

Cause of Photoluminescence from Eu³⁺ in YAIO₃ Single Crystal

⁰森本 貴明¹, 大木 義路^{1,2}(早大 ¹先進理工・²材研)

°Takaaki Morimoto¹, Yoshimichi Ohki^{1, 2} (¹GSASE and ²RIMST of Waseda Univ.)

E-mail: takaaki.morimoto@aoni.waseda.jp

半導体ゲート絶縁膜やシンチレーターの材料として期 待されるペロブスカイトYAlO₃(YAP)単結晶板のフォトル ミネセンス(PL)スペクトルを、シンクロトロン放射光を光 源に用いて10Kで測定した。

図1は、測定に用いた励起光のエネルギーを縦軸、検出 エネルギーを横軸にとり、強度を色で示した図である。図 1においてA、Bと記した鋭いPLは、それぞれ不純物として 含まれるEr³⁺とCr³⁺に起因し、C、D、Eと記したPLはそれ ぞれ、酸素空孔、自己束縛励起子、アンチサイト欠陥に起 因することを、我々は既に報告した⁽¹⁾。

一方、7.7eVの励起光により、Eu³⁺に起因すると考えら れるPL⁽²⁾が2eV付近に検出される(図1でFと表記)。図2に、 このPLを横方向にスライスしたPLスペクトルを示す。PL Fは、1.79, 1.89, 2.01, 2.10eVのピーク(i)~(iv)からなる。 このうちピーク(iv)はEu³⁺の4f 電子の⁵ D_0 から⁷ F_1 準位へ の磁気双極子遷移、ピーク(iii)は⁵ D_0 から⁷ F_2 準位への電 気双極子遷移に起因する。

Judd-Ofeltの理論⁽³⁾によると、電気双極子遷移によるピ

Composition	ionic radius [Å]			Tolerance
	Y^{3+} and Eu^{3+}	Al ³⁺	O ²⁻	factor
YAlO ₃	1.075	0.535	1.40	0.904
Y _{0.9} Eu _{0.1} AlO ₃	1.080	0.535	1.40	0.906

ーク(iii)はEu³⁺周囲の配位子場が反転対称性を有すると禁制、有さないと許容となる。一方、磁気双 極子遷移によるピーク(iv)は対称性に関係なく許容となる。ここで、Eu³⁺が存在するY³⁺サイトは 反転対称性を持つ12配位子場であるため、ピーク(iii)は本来出現しない筈である。そこで、ペ ロブスカイト構造の立方晶への近さの度合いを示す許容因子t^(4,5)を、YAlO₃とY_{0.9}Eu_{0.1}AlO₃に ついて計算した。表Iに示すように、YAlO₃がY_{0.9}Eu_{0.1}AlO₃になるとtは僅かに上昇する。ゆえ に、元来斜方晶であるYAP単結晶において、Eu³⁺の置換サイトのみ対称性の高い立方晶に近 づく。したがって、tの値は直接的にはピーク(iii)の出現を説明できない。そこで、立方晶に 近づいたEu³⁺置換サイトと周囲の斜方晶格子との間で生じる歪みが、PLピーク(iii)を出現させ るという可能性が考えられる。しかし、断定には、さらなる検討が必要である。

(1) T. Morimoto et al.: Nucl. Instrum. Meth. B 366, 198 (2016). (2) H. Gao et al.: Mater. Res. Bull. 42, 921 (2007).

(3) Baldassare Di Bartolo *et al.*: "Advances in Spectroscopy for Lasers and Sensing", (Springer, 2006), p.403.

(4) T. Ishihara et al.: "Perovskite Oxide for Solid Oxide Fuel Cells", Springer (2009), p.47. (5) S. Kato et al, JCS-Japan 107, 633 (1999).