軸方向放電励起短パルス CO2 レーザーによる人の歯の切削

Drilling Human-tooth by Longitudinally Excited Short-Pulse CO₂ Laser 山梨大工 ¹, 阪大レーザー研 ²

○山本 拓哉 1,宇野 和行 1,秋津 哲也 1,實野 孝久 2

Univ. Yamanashi¹, ILE, Osaka Univ.²,

[○] Takuya Yamamoto¹, Kazuyuki Uno¹, Tetsuya Akitsu¹, Takahisa Jitsuno²

E-mail: g15mh018@yamanashi.ac.jp

1. 研究背景・目的

現在、歯科治療に用いられている CO_2 レーザーは、数十 μ s 一数 ms の長パルスレーザーである. 長パルス CO_2 レーザーは、照射対象へ与える熱影響が大きく炭化が生じるため、硬組織の治療に使用されていない. 炭化を生じさせない硬組織の切削には、 CO_2 レーザーの短パルス化が必要である. そこで、本研究では短パルス化の可能な軸方向放電励起 CO_2 レーザーを用いて、人の歯の加工試験を行った.

軸方向放電励起 CO_2 レーザーは,長い放電長により低ガス圧動作が可能である. 低ガス圧動作では,レーザーパルス波形が媒質ガスの影響を受けやすい. そのため,軸方向放電励起 CO_2 レーザーでは,媒質ガスの調整によりレーザーパルス波形が制御可能である. 本研究では,3 種類のテール付き短パルス CO_2 レーザーを用いて,人の歯の象牙質およびエナメル質に加工試験を行った.

本研究の目的は、短パルス CO_2 レーザーに よる炭化のない人の歯の切削および切削特性 の調査である.

2. 実験

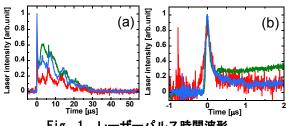
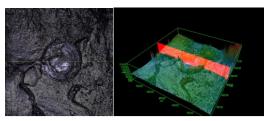


Fig. 1. レーザーパルス時間波形. (a)全体図,(b)拡大図.

Tabel 1. 各レーザーパルス波形の主なパラメータ.

	緑	青	赤
出力エネルギー	26.3 mJ	11.9 mJ	9.3 mJ
尖頭パルス幅	112 ns	153 ns	162 ns
パルステール長	31.0 μs	38.7 μs	28.4 μs
尖頭パルスエネルギー	1.1 mJ	1.1 mJ	1.0 mJ
ピークパワー	10.0 kW	7.1 kW	5.9 kW

Fig. 1 は本実験で用いたレーザーパルス波形


である. Table 1 は Fig. 1 に示した各レーザー パルス波形の主なパラメータを示す.

本実験では、装置から出力されたレーザー光が焦点距離 5 cm の ZnSe 集光レンズにより集光された. 集光された光は、焦点面に固定された人の歯に照射された. また、フルエンスの制御は、減衰器による出力エネルギーの調整により行われた. Table 2 は、制御された各レーザーパルス波形のフルエンスを示す.

Table 2. 各レーザーパルス波形のフルエンス.

減衰率	緑[J/cm²]	青[J/cm ²]	赤[J/cm ²]
0%	9.5	7.0	7.7
36%	6.1	4.5	4.9
70%	2.9	2.1	2.3

3. 結果

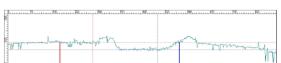


Fig. 2. 象牙質の切削プロファイル.

Fig. 2 は、Fig. 1 の青のレーザーパルス波形で加工された象牙質の切削プロファイルである. 本実験の 1 ショット照射における最大切削深度は、フルエンス 4.5 J/cm² のとき 45.5 μm であった. 本実験では、すべての条件の 1 ショット照射において、炭化のない人の歯の象牙質の切削加工が実現した.

4. 参考文献

[1] K. Uno, et al., Proc. SPIE, 9692 (2016) 96920K.