Study of polarization uniformity in N-doped ferroelectric HfO₂ by piezo-response force microscopy

Lun Xu^{1*}, Shigehisa Shibayama¹, Tomonori Nishimura¹, Takeaki Yajima¹, Shinji Migita², and Akira Toriumi¹

 Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8569, Japan * E-mail: xulun@adam.t.u-tokyo.ac.jp

The ferroelectricity of HfO_2 can be enhanced by cation doping, such as Si, Al, Y, Sr, and Zr.^[1] It is believed that the oxygen vacancy (Vo) formation is responsible for the HfO_2 phase transition from monoclinic phase to tetragonal and cubic phases,^[2] and thus polar orthorhombic phases (Pca2₁, Pmn2₁) can form.^[3] Recently, N doping is reported to be effective to enhance the HfO_2 ferroelectricity, and N directional bonds exhibit strong effects on structural and electrical properties of HfO_2 .^[4] Compared with trivalent cation doping, N doping is more sensitively for the HfO_2 para-/ferroelectric transition. This difference should be related to N bonds formation. The distortion effect of N bonds can enhance the HfO_2 phase transition process initially, while a lot of directional N bonds would influence the local polarization properties, we use the piezo-response force microscopy (PFM) to study the local polarization properties of N-doped HfO₂.

In this study, 28-nm-thick HfO₂ films were fabricated by rf-sputtering. N₂/(N₂+Ar) gas flow ratio varied from 1% to 50% with 20 sccm total gas flow for N-doped HfO₂; Sc-doped and Y-doped HfO₂ were cosputtered with 20 sccm Ar gas flow. Post-deposition annealing was carried out at 600 °C, 30 seconds in 1 atm N₂. In PFM writing process, 9 V DC bias (V_{DC}) was applied in 2×2 µm² area, which was followed by -5 V V_{DC} in 1×1 µm² area. After this, we scanned 2×2 µm² with V_{DC} =2 V and V_{AC} =0.7 V. The PFM phase images of 0.3% N-doped and 0.7% Y-doped HfO₂ were shown in **Fig 1 (a)** and **(b)**. Although both PFM phase images exhibit the ferroelectricity of N-doped and Y-doped HfO₂ films, N doped HfO₂ presents tougher and more uniform polar states. This observation indicates N bonds formation might improve the local polarization stability.

In conclusion, we demonstrate the different local polarization in N-doped and Y-doped HfO_2 by using PFM. The results indicate that N bonds might stabilize HfO_2 polar states.

This work was supported by JST-CREST.

- [1] M. H. Park et al., Adv. Mater. 27, 1811 (2015).
- [2] A. Navrotsky, J. Mater. Chem. 15, 1883 (2005).
- [3] T. D. Huan et al., Phys. Rev. B. 90, 064111 (2014).
- [4] L. Xu et al., the 40th JSAP spring meeting (2016).

Fig. 1 PFM phase images of $2 \times 2\mu m^2$ area for (a) 0.3% N-doped HfO₂ and (b) 0.7% Y-doped HfO₂ scanned at $V_{DC} = 2$ V and $V_{AC} = 0.7$ V after writing scan with $V_{DC} = 9$ V in $2 \times 2 \mu m^2$ and $V_{DC} = -5$ V in the central $1 \times 1 \mu m^2$ area, respectively.