La₂O₃/InGaAs MOS 界面におけるスロートラップ密度のエネルギー分布 Energy Distribution of Slow Trap Density at La₂O₃/InGaAs MOS Interfaces [°]張志宇^{1,2}、竹中充^{1,2}、高木信一^{1,2}(東大院工¹、JST-CREST²) [°]C.-Y. Chang^{1,2}, M. Takenaka^{1,2} and S. Takagi^{1,2} (The University of Tokyo¹, JST-CREST²) E-mail: cychang@mosfet.t.u-tokyo.ac.jp

【はじめに】ALD-La₂O₃/InGaAs MOS 界面は、 低い界面準位密度をもち、有望なゲートスタッ ク構造であるが、C-V特性に大きなヒステリシ スが見られ、スロートラップが多く存在する点 が課題である[1]。一方、High-k/InGaAs MOS 界面のスロートラップは、エネルギー的に分布 しており、結果として C-V 特性のヒステリシ スはゲートバイアスによって変化することが 報告されている[2]。ここで、ゲートバイアス を変えながら C-Vのヒステリシスを見ること によってスロートラップ密度のエネルギー分 布を評価することができる。そこで本研究では、 この方法を用いて ALD-La₂O₃/InGaAs MOS 界 面のスロートラップ密度とそのエネルギー分 布を評価して、ALD-Al₂O₃/InGaAs MOS 界面の 結果と比較したので、その結果を報告する。

【実験結果】図1に(a) La₂O₃(11.4 nm)/InGaAs と(b) Al₂O₃(8.4 nm)/InGaAs MOS キャパシタの C-V を示す。ここで、ゲート電圧掃引は V_{start} から Vend まで増大させた後、Vstart に戻している。 V_{start} を一定として、 V_{end} をパラメータとて変化 させている。Vend でのフェルミレベル位置は伝 導帯端近傍にあるため、この C-V のヒステリ シスから伝導帯近傍のスロートラップの密度 が分かる。図 1 から、La₂O₃/InGaAs と Al₂O₃ /InGaAs のヒステリシスの大きさはほとんど変 わらないことから、伝導帯端に近くのスロート ラップ密度は、両者で殆ど変わらないことが分 かる。図2に V_{end} を一定として V_{start} を変えた(a) La2O3/InGaAs と(b) Al2O3/ InGaAs MOS キャパ シタの C-V 特性を示す。Vend でのフェルミレベ ル位置は伝導帯近傍、 V_{start} では midgap (E_i)か ら価電子帯側にあるため、この C-V 特性のヒ ステリシスから midgap から価電子帯側のスロ ートラップ密度が分かる。図 2(a)の La₂O₃/InGaAs のヒステリシスが、図 1(a)の結果 よりかなり大きいことから、La₂O₃/InGaAs MOS 界面のスロートラップはmidgapから価電 子帯にかけて多く存在することが分かる。

midgap 近傍のスロートラップ密度のエネル ギー分布を定量的に解析するため、V_{start}から一 定の Vend までゲート電圧を掃引した時のスロ ートラップ密度の変化量 ($\Delta N_{\rm eff} = \Delta V_{\rm FB} \cdot C_{\rm ox}/q$) を各 V_{start} に対応する表面ポテンシャル($\varphi_{\text{s,start}}$) の関数としてプロットした結果を図3に示す。

さらに、図 3 の結果から、*ΔN*eff を表面ポテン シャルで微分することで、単位エネルギー辺り のスロートラップ密度(Neff)のエネルギー分布 を求めた結果を図 4 に示す。結果として、 midgap から価電子帯にかけて、La₂O₃/InGaAs のスロートラップ密度は Al₂O₃/InGaAs より 2~3 倍程度大きくなることが分かる。

【結論】La₂O₃/InGaAs と Al₂O₃/InGaAs MOS 界 面におけるスロートラップ密度のエネルギー 分布を C-V 特性のヒステリシスを定量的に解 析することにより求めた。La₂O₃/InGaAs MOS キャパシタの C-V 特性で見られる大きいヒス テリシスは、midgap から価電子帯にかけて存 在する高密度のスロートラップに起因するこ とが分かった。

【参考文献】[1] C.-Y. Chang et al. JAP, 118, 085309 (2015) [2] A. Vais, et al., APL, 107, 223504 (2015).

Fig. 1 V_{start} fixed and V_{stress} variated C-V curves of (a) W/La₂O₃ (11.4 nm)/InGaAs and (b) W/Al₂O₃ (8.4 nm)/InGaAs.

Fig. 2 V_{stress} fixed and V_{start} variated C-V curves of (a) W/La₂O₃ (11.4 nm)/InGaAs and (b) W/Al₂O₃ (8.4 nm)/InGaAs.

Fig. 3. ΔN_{eff} vs $\phi_{s,start}$ of of Fig. 4. The energy distribution W/La₂O₃/InGaAs and W/Al₂O₃/InGaAs.

of $N_{\rm eff}$ of W/La₂O₃/InGaAs and W/Al₂O₃/InGaAs