Ce 添加 LiCaAlF₆ シンチレータにおける LET 特性

LET effect on Ce:LiCaAlF₆ scintillator

奈良先端大¹, 東北大², 量研機構高崎³, Notre Dame 大⁴, トクヤマ⁵ [○]柳田 健之¹, 越水 正典
², 倉島 俊³, 岩松 和宏⁴, 木村 敦³, 田口 光正³, 福田 健太郎⁵、藤本 裕², 浅井 圭介²,
岡田 豪¹, 河口 範明¹

NAIST¹, Tohoku Univ. ², QST³, The Univ. of Notre Dame⁴, Tokuyama Corp.⁵, °Takayuki Yanagida¹, Masanori Koshimizu², Satoshi Kurashima³, Kazuhiro Iwamatsu⁴, Atsushi Kimura³, Mitsumasa Taguchi³, Kentaro Fukuda⁵, Yutaka Fujimoto², Keisuke Asai², Go Okada¹, Noriaki Kawaguchi¹ E-mail: t-yanagida@ms.naist.jp

シンチレーション検出器は医療、セキュリティ、資源探査、高エネルギー物理学などに広く利用されており、特に近年では中性子計測用のシンチレータ開発が盛んである。中性子計測用のシンチレータは 6 Li もしくは 10 B を含有しているものが多く、例えば前者の場合は 6 Li(n, α) 3 H 反応に基づいて中性子を荷電粒子に変換し、計測を行っている。そのため実際にシンチレーションを引き起こしているのは荷電粒子であり、物理的な素過程における LET 効果の理解も、高効率なシンチレータを開発するうえでは重要である。こういった中性子用シンチレータとしては、国産の LiCaAlF₆ が開発されており [1-2]、トクヤマ社より供給されている。本研究では、特に Ce を添加した LiCaAlF₆ シンチレータの LET 効果を調査することが目的である。

単結晶サンプルはトクヤマ社において、チョクラルスキー法により育成された。低 LET 時におけるシンチレーション特性 (X 線励起発光スペクトル、蛍光減衰時定数) は奈良先端にて測定した。高 LET 時の発光挙動の計測は、原研高崎の TIARA を用いて行った [3]。照射核種は、20~MeV H $^+$ 、50~MeV He $^{2+}$ 、220~MeV C $^{5+}$ である。本研究においては、特にこれらの蛍光減衰時間特性解析を主に行った。

上記のような計測を行ったところ、幾つかの LET に依存した特徴を発見した。低 LET 時においては、高速な発光が検出され、これは高 LET 時には消失した。検出器特性としては既に報告されているが [4]、これを改めて検証した形となる。また LET の違いにより、シンチレーション時間プロファイルの立ち上がり、減衰部がそれぞれ異なる事、さらに発光中心として添加している Ce 濃度に依存している事を発見した。本講演ではこれらの結果に関し報告する。

参考文献

- [1] T. Yanagida, et al., Opt. Mater. 32, 311-314 (2009)
- [2] T. Yanagida, et al., Opt. Mater. ,33, 1243-1247 (2011).
- [3] M. Koshimizu, et al., Rev. Sci. Instrum., 86 013101 (2015).
- [4] A. Yamazaki, et al., Nucl. Instr. and Meth. A, 652 435-438 (2011).