GaN MOS 界面における表面ポテンシャル揺らぎの絶縁膜形成温度依存性 ALD Temperature Dependence of Surface Potential Fluctuation at GaN MOS Interfaces 産総研 GaN-OIL¹,名エ大² ^O田岡紀之¹,久保俊晴²,山田寿一¹,江川孝志²,清水三聡¹ AIST GaN-OIL.¹, Nagoya Institute of Tech.², [°]N. Taoka¹, T. Kubo², T. Yamada¹, T. Egawa², M. Shimizu¹ E-mail: taoka-nori@aist.go.jp

【背景】AlGaN/GaN 界面に形成される 2 次元電子ガスを 活用した高周波パワーデバイスやパワー集積回路等に注 目が集まっている。一方、電流コラプス現象や閾値制御 が問題であり、良好な表面保護膜、MOS 構造の形成技術 の確立が望まれている。GaN MOS 界面は、これまでにも 盛んに研究されているが¹⁾、未だ Si MOS 界面と比較して 未解明の部分が多い。

ワイドバンドギャップ半導体では、バンドギャップ全体にわたり界面特性を評価することは困難であるが、固定電荷や帯電した界面準位等の全電荷量を間接的に評価することは可能である。その指標の一つが表面ポテンシャル揺らぎ(σ_s)である²)。そこで本研究では、界面特性を正確に把握するために材料系を簡素化し、Al₂O₃/GaN MOS 構造を形成、その電気的界面特性を詳細に調べた。

【実験】サファイア基板上に MOCVD で n 型 GaN 層を形 成後、TMA と H₂O を用いた原子層堆積法(ALD)によって、 20 nm の Al₂O₃層を異なる温度(T_d)で形成した。その後、 ゲート電極 Pd/Ni/Au を形成することによって、MOS キ ャパシタを作製した(作製プロセスの詳細は、Ref. 3)に 記載されている)。これらのキャパシタの界面特性を *C-V* 法およびコンダクタンス法によって詳細に調べた。

【結果】異なる T_dで形成した GaN MOS キャパシタの C-V カーブを図 1(a)-(c)に示す(測定周波数は 1kHz~1MHz で ある)。どの T_d においても、 C_{FB} 近傍において周波数分散 が見られ、その分散は T_d に依存している。図 2(a)-(c)に Terman 法とコンダクタンス法で求めた界面準位密度(D_i) 分布を示す。どのT_dにおいても、2つの方法によって求 めた D_{it}分布は良く一致している。このことは、示した領 域において、D_{it}分布が正しく求められていることを示し ている。また、D_{it}およびフラットバンド電圧シフトから 求めた電荷量(N_f)の T_d 依存性を図 2(d)に示す。 D_i は、 T_d の上昇と共に増加しているが、N_fは 300℃で減少してい る。正負の電荷が混在する場合は、その補償のため、N_f が小さく見積られる。しかし、その混在は、σ。の増大を 引き起こし、G_p/ωカーブの周波数軸方向への広がりとし て現れる。図 3(a)に、T_d=200℃と 300℃の場合の G_p/ωカ ーブおよび Nicollian らのモデル²⁾を基に計算した Gp/のカ ーブを示す。高周波数側では、実験値と計算値の差は大 きいが、概ね計算と実験結果は一致している。またピー クの広がりは、T_d=300℃の場合の方が大きいことが分か る。この広がりから求めたσ。の分布(図 3(b))から、σ。は T_dと共に増加することが分かる。また、これら値は Si

Gate voltage (V) Fig. 1: Multi-frequency *C-V* curves with series resistance correction measured at RT for (a) T_d =200°C, (b) 250°C and (c) 300°C. Here, C_{FB} means capacitances at flat-band conditions for each sample.

Fig. 3: (a)Measured and calculated Gp/ω curves for $T_d=200^\circ$ C and 300° C. (b) Energy distributions of surface potential fluctuation normalized by kT. Here, k and T are Boltzmann constant and absolute temperature.

MOS の場合²⁰と比較して極めて大きな値である。このことは、 $T_d=300$ Cの場合には多量の正負の電荷が MOS 界面に形成されていることを示している。発表当日は、 O_3 および H_2O を酸化剤とした場合の界面特性についても議論する予定である。

【謝辞】この成果の一部は、NEDO の委託業務の結果得られたものです。参考文献:1) 橋詰保 応用物理, 81, 479(2012). 2)E. H. Nicollian *et al.*, *MOS physics and Technology*, (Wiley InterScience). 3)T. Kubo *et al.*, Semicond. Sci. Technol. 29, 045004(2014).