## 金属/n-Ge 接合への Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> 層挿入による ショットキー障壁高さの低減 Reduction of Schottky barrier height of metal/n-Ge contact by insertion of Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> layer <sup>1</sup>名古屋大院工、<sup>2</sup>学振特別研究員、<sup>3</sup>名古屋大未来研 <sup>0</sup>鈴木陽洋<sup>1,2</sup>、戸田祥太<sup>1</sup>、中塚理<sup>1</sup>、坂下満男<sup>1</sup>、財満鎭明<sup>1,3</sup> <sup>1</sup>Grad. Sch. of Eng., Nagoya Univ., <sup>2</sup>The Research Fellow of JSPS, <sup>3</sup>IMaSS, Nagoya. Univ. <sup>◦</sup>A. Suzuki<sup>1, 2</sup>, S. Toda<sup>1</sup>, O. Nakatsuka<sup>1</sup>, M. Sakashita<sup>1</sup>, and S. Zaima<sup>1, 3</sup> E-mail: asuzuki@alice.xtal.nagoya-u.ac.jp

【研究背景】ゲルマニウム(Ge)は、シリコン(Si)に比べ電子・正孔ともにキャリア移動度が大きく、次世代の金属-酸化膜-半導体電界効果トランジスタ(MOSFET)のチャネル材料候補である。しかし、Ge-nMOSFETの実用化に向けては、金属/n-Ge界面における、強いフェルミレベルピニング(FLP)に起因する高いショットキー障壁高さ(SBH)が問題である。我々は最近、金属/Ge界面へのSn組成47%のゲルマニウム錫(Ge<sub>1-x</sub>Sn<sub>x</sub>)層の挿入によるSBHの減少(~0.54 eV)を報告した[\*]。しかし、実用的な低抵抗金属/n-Ge 接合の実現には、さらなるSBHの低減が要求される。

本報告では、金属/Ge 接合へのシリコンゲルマニウム錫(Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>) 層の挿入に着目した。 Si、Sn の組成比が 3.7:1.0 の Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>は、Ge に格子整合する。格子整合 Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/Ge 構造 は結晶性に優れ、欠陥密度の低い界面を形成でき、更なる SBH の低減が期待できる。

【試料作製】清浄化した *n*-Ge(001)基板上に、超高真空下で、膜厚が 6~8 nm、Si、Sn 組成(*x*、y)が (4%、1%)および(15%、6%)のエピタキシャル Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>層を 200 ℃ の基板温度にて形成した。 Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>層表面の自然酸化物を化学的に除去後、直径 200~520 µm のアルミニウム (Al) 電極 を高真空中蒸着によって形成した。裏面に Al 電極を同様に形成し、Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/*n*-Ge(001)ショ ットキーダイオードを作製した。また比較のため、Al/*n*-Ge(001)および Al/Ge<sub>0.58</sub>Sn<sub>0.42</sub>/*n*-Ge(001)ダ イオードも作製した。

【結果および考察】Fig. 1 は、Ge<sub>0.58</sub>Sn<sub>0.42</sub>/Ge(001)および Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/Ge(001)試料の in-plane-XRD プロファイルである。Ge 基板由来の回折ピークよりも低角側に Ge<sub>0.58</sub>Sn<sub>0.42</sub> 由来の回折ピークが観 測された。これは、Ge<sub>0.58</sub>Sn<sub>0.42</sub> と Ge の格子定数差に由来した Ge<sub>0.58</sub>Sn<sub>0.42</sub> 層の歪緩和を示唆してい る。一方で、Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> 由来の回折ピーク位置は、いずれの組成の試料においても Ge 基板とほ ぼ等しい。すなわち、両者の面内格子定数がほぼ等しく、Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/Ge 界面の結晶性は、 Ge<sub>0.58</sub>Sn<sub>0.42</sub>/Ge 界面と比較して優れていると推測される。

Al/n-Ge、Al/Ge<sub>0.58</sub>Sn<sub>0.42</sub>/n-Ge、および Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/n-Ge 接合の電流密度-電圧 (*J-V*) 測定を 100~300 K にて行い、順方向 *J-V*特性から各 SBH を求めた。300 K において、Al/n-Ge、Al/Ge<sub>0.58</sub>Sn<sub>0.42</sub>/n-Ge 接合の *J-V*特性は整流特性を示したのに対し、Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/n-Ge 接合はいずれもオーミック 特性を示した (Fig. 2)。Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/n-Ge 接合は、150 K 以下の低温領域において整流性が顕在 化した (図省略)。Al/Si<sub>0.04</sub>Ge<sub>0.95</sub>Sn<sub>0.01</sub>/n-Ge および Al/Si<sub>0.15</sub>Ge<sub>0.79</sub>Sn<sub>0.06</sub>/n-Ge 接合の SBH はそれぞれ 0.18 および 0.23 eV となり、いずれも Al/n-Ge, Al/Ge<sub>0.58</sub>Sn<sub>0.42</sub>/n-Ge 接合よりも低い (Table 1)。本結 果は、Ge に格子整合した Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> 界面層の導入により、低抵抗金属/n-Ge 接合の実現が可能に なることを示唆している。



【参考文献】[\*] A. Suzuki et al., Appl. Phys. Lett. 107, 212103 (2015).

Fig. 1. In-plane-XRD profiles of  $Si_xGe_{1-x-y}Sn_y/Ge(001)$  and  $Ge_{0.58}Sn_{0.42}/Ge(001)$  samples.



Fig. 2. *J-V* characteristics of Al/*n*-Ge, Al/Ge<sub>0.58</sub>Sn<sub>0.42</sub>/*n*-Ge and Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/*n*-Ge Schottky diodes measured at 300 K.

Table 1. SBHs of Al/*n*-Ge, Al/Ge<sub>0.58</sub>Sn<sub>0.42</sub>/*n*-Ge and Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/*n*-Ge Schottky diodes.

|                                                          | SBH (eV) |
|----------------------------------------------------------|----------|
| w/o interlayer                                           | 0.69     |
| Ge <sub>0.58</sub> Sn <sub>0.42</sub>                    | 0.59     |
| Si <sub>0.04</sub> Ge <sub>0.95</sub> Sn <sub>0.01</sub> | 0.18     |
| Si <sub>0.15</sub> Ge <sub>0.79</sub> Sn <sub>0.06</sub> | 0.23     |