Electric-field induced magnetization switching in CoFeB/MgO magnetic tunnel junction with thick MgO barrier

Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ.¹, CSIS, Tohoku Univ.², CSRN, Tohoku Univ.³, WPI-AIMR, Tohoku Univ.⁴, CIES, Tohoku Univ.⁵

O. Kanai¹-³,*, F. Matsukura¹-⁴, and H. Ohno¹-⁵

*E-mail: sct273@riec.tohoku.ac.jp

Magnetization switching energy is expected to be reduced by the electric-field induced scheme, because charging/discharging energy of the capacitor is a few orders smaller than the Joule heating consumed by the conventional current-induced scheme for magnetic tunnel junctions (MTJs). So far, we used the CoFeB/MgO/CoFeB MTJ as a pseudo-capacitor [1,2], in which, even for the electric-field switching, the energy was governed by the Joule heating resulted from tunnel current. In this work, to reduce the Joule heating, we use a CoFeB/MgO with high junction resistance \(R \) by increasing MgO barrier thickness.

We fabricate a MTJ with a diameter of 60 nm from a stack of Ta(5)/Pt(5)/[Co(0.34)/Pt(0.4)]_6/Co(0.4)/Ru(0.42)/[Co(0.34)/Pt(0.4)]_2/Co(0.34)/Ta(0.3)/Co_{20}Fe_{60}B_{20}(1)/MgO(2.8)/Co_{18.75}Fe_{56.25}B_{25}(1.8)/Ta(5)/Ru(5) (numbers in parentheses are nominal thickness in nm) deposited on a sapphire substrate. The device resistance-area product \(R_A \) is 176 kΩμm² at zero bias, which is several-order larger than those for the current-induced switching devices. Figure shows the product of switching probabilities \(P_{P \rightarrow AP}P_{AP \rightarrow P} \) from parallel (P) to anti-parallel (AP) and from AP to P by the application of an electric-field pulse of 0.78 V/nm as a function of pulse duration \(t_{\text{pulse}} \). The probability of almost unity is obtained at \(t_{\text{pulse}} \approx 1.25 \) ns, at which the switching energy is evaluated to be 6.3 fJ/bit. While this is one or two-order smaller switching energy than those reported so far [3], the energy is still dominated by the Joule heating. This is due to stronger bias dependence of \(R \) for MTJs with thicker MgO, neglected in the previous report on MTJs with high \(R \) [4]. In order to suppress the Joule heating, one needs search ways to reduce the bias dependence of \(R \) as well as the threshold electric field for the switching.

This work was supported in part by R&D Project for ICT Key Technology of MEXT, JSPS Core-to-Core Program, and Grants-in-Aid for JSPS Scientific Research (No. 16H06081) as well as MEXT (No. 26103002).

References