Possibility of fabricating n-BaSi₂/p type multicrystalline Si (p-mc-Si)

heterojunction solar cells

¹Univ. Tsukuba, ²NIMS [°]Y. Li¹, R. Takabe¹, T. Deng¹, Z. Xu¹, K. Toko¹, T. Sekiguchi², T. Suemasu¹ E-mail: bk201520388@s.bk.tsukuba.ac.jp

Introduction

Properties explored in epitaxial BaSi₂ such as a large absorption coefficient (α =3×10⁴ cm⁻¹@1.5 eV) and a large minority-carrier lifetime (~10 µs) have shown the potential of BaSi₂ as a new candidate material for thin-film solar [1, 2]. In our recent work, we have successfully fabricated p-BaSi₂/n-Si heterojunction solar cells with conversion efficiency reaching 9.0% [3]. However, the dependence on epitaxial BaSi₂ may limit the possibility of solar cell mass production. Therefore, it is also significant to prove the possibility of fabricating solar cell with non-epitaxial BaSi₂. In this study, we have grown non-epitaxial BaSi₂ on mc-Si substrates, aiming to fabricate n-BaSi₂/p-mc-Si heterojunction solar cells and evaluate their properties.

Experiment

We adopted p-type mc-Si substrates with small and randomly oriented Si grains. 20 nm (Sample A), 50 nm (Sample B), 240 nm (Sample C) BaSi₂ were grown on those substrates by MBE method. 8 nm, 13 nm, 26 nm α -Si were capped on the surface of each sample for passivation, respectively. The growth of non-epitaxial n-BaSi₂ was confirmed by X-ray diffraction (XRD) in each sample. ITO/n-BaSi₂/p-mc-Si/Al structure was used for solar cell characteristic measurement.

Results & Discussions

Figure 1 shows the external quantum efficiency (EQE) spectra for all the samples with no bias voltages. This result demonstrates that the n-BaSi₂/p-mc-Si heterointerface does not hinder the transport of photogenerated carriers. Sample A with 20 nm BaSi₂ shows the largest EQE among those samples. This may be due to the fact that the thinner non-epitaxial BaSi₂ has lesser defects than that of the thicker ones. Table 1 shows the solar cell parameters of those samples measured under AM 1.5 illumination. In spite of the difference in BaSi₂ thickness, conversion efficiency has been confirmed in all the samples. This result shows the possibility of fabricating n-BaSi₂/p-mc-Si heterojunction solar cells. Sample C, capped with 26 nm α -Si, shows the largest R_S , resulting in the lowest η , 0.52%. Therefore, there are also many other approaches to improve η , e.g., optimize the thickness of passivation layers.

Acknowledgments This work was financially supported in part by JST-CREST and JSPS (15H02237).

[1] K. Toh et al., Jpn. J. Appl. Phys. 50 (2011) 068001. [2] R. Takabe et al., J .Appl. Phys. 115 (2014) 193510.

[3] D. Tsukahara et al., Appl. Phys. Lett. 108 (2016) 152101.

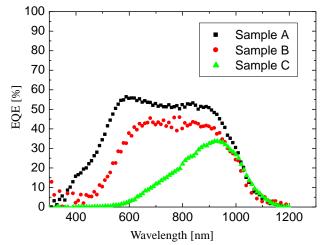


Fig 1 EQE spectra for samples A, B and C under 0 bias voltage.

	Sample A	Sample B	Sample C
η	1.59%	0.99%	0.52%
$V_{\rm OC}({ m V})$	0.15	0.12	0.10
J _{SC} (mA/cm2)	22.5	18.0	13.3
FF	0.48	0.45	0.39
$R_{\rm S}(\Omega)$	270	251	526
$R_{\rm SH}(\Omega)$	7330	5106	2819

 Table 1 Solar cell parameters for samples A, B and C are specified.