AIN/SiC および GaN/SiC 極性界面の構造安定性に関する理論的検討: 歪み緩和の影響 Structural stability of polar AIN/SiC and GaN/SiC interfaces: effects of strain relaxation 三重大院工, 〇秋山亨, 中根晴信, 中村浩次, 伊藤智徳 Mie University, OToru Akiyama, Harunobu Nakane, Kohji Nakamura, Tomonori Ito E-mail: akiyama@phen.mie-u.ac.jp

【はじめに】SiCはIII族窒化物結晶成長のエピタキシャル成長基板として用いられており、Si層が 最表面となるSi面SiC基板では、それぞれGaおよびAI極性となるGaNおよびAIN結晶が成長するこ とが報告されている。[1-4]また、その界面構造に関しても電荷中性条件を考慮した原子配列が提 案されている。[1,3]これまでに我々は、界面での極性および原子配列に注目して第一原理全エネ ルギー計算に基づく表面および界面エネルギー計算手法により、コヒーレント成長を仮定した場 合でのGaN/SiCおよびAIN/SiC極性界面での界面エネルギーを算出し、成長条件下ではそれぞれGa およびAI極性となる理想界面が安定となることを見出し、界面での安定性がSiC基板上のGaNおよ びAINの極性を決定する要因となり得ることを提案した。[5,6]しかしながら、SiC基板上のAINお よびGaN結晶成長においてはその膜厚が数nmの成長初期段階においても歪み緩和が起こることが その場放射光X線回折[7]よって示唆されており、歪み緩和が極性および界面での原子配列に対し ても影響をおよぼす可能性が考えられる。本研究では、GaIN/SiCおよびAIN/SiC界面において仮想 的に格子定数を変化させて界面エネルギーを計算し、歪み緩和が界面での原子配列および極性に およぼす影響を理論的に検討する。

【結果および考察】Fig.1(a)はGaNの平衡格子定数(a=3.22 Å)を界面での格子定数とした場合での、 様々な原子配列における界面エネルギーσ_{int}をGaの化学ポテンシャルの関数として示したもので ある。この図から、Gaの化学ポテンシャルに依らずFig.1(b)に示すGa極性となる理想界面の界面 エネルギーが最低となり、この理想界面がFig.1(c)~1(e)に示す他の原子配列をとる界面に比べて 安定となることが解る。この界面の安定性はコヒーレント成長を仮定した場合(SiCの格子定数 a=3.10 Å)におけるSiC基板上GaNにおける結果[5,6]とも同様であり、この傾向は格子不整合度の小 さいAIN/SiC界面においても見られ、AIN/SiC界面においてはAI極性となる理想界面がAIの化学ポ テンシャルの広い範囲において安定となる。従って、AIN/SiCおよびGaN/SiC界面における界面構 造および極性への歪み緩和のおよぼす影響はほとんど無いものと考えられ、界面での安定性がSiC 基板でのIII族窒化物結晶成長における極性を決定する要因となり得ること示唆される。

【参考文献】[1] F. A. Ponce *et al.*, Phys. Rev. B **53**, 7473 (1996). [2] P. Vermaut *et al.*, Phil. Mag. A **76**, 1215 (1997). [3] F. Bosherini *et al.*, Appl. Phys. Lett. **74**, 3308 (1999). [4] J. N. Stirman *et al.* Appl. Phys. Lett. **76**, 822 (2000). [5] 秋山 他: 第63回春季応物学会20p-H121-11 (2016). [6] T. Akiyama *et al.*: submitted. [7] 佐々木 他: 第63回春季応物学会 20p-H121-9 (2016).

Fig. 1: (a) Calculated interface energy σ_{int} as a function to Ga chemical potential and (b) atomic configurations between 3C-SiC and strain-released GaN films. Red and blue lines represent σ_{int} for the interfaces resulting in Ga-polar and N-polar GaN thin films on Si-face 3C-SiC(111) substrate, respectively.