Cu-doping into ZnSnN₂ film: Structural, Electrical and Optical Properties Chubu Univ.¹ NIMS.²

°X. Cao¹, Y. Sugiyama¹, F. Kawamura², Y. Ninomiya¹, T. Taniguchi², N. Yamada¹ E-mail: jscaoxiang_chubu@isc.chubu.ac.jp

INTRODUCTION: Zinc tin nitride $(ZnSnN_2)$ can be regarded as a pseudo-III-nitride semiconductor. The bandgap was theoretically predicted to be (1.42 ± 0.1) eV [1], which is ideal for both photovoltaic absorbers and visible light-active photocatalysts. Thus $ZnSnN_2$ can be an excellent material for such applications. However, reported electron densities (n_e) as high as $\sim 10^{21}$ cm⁻³ [1] were consistent with heavy donor doping. Such high n_e are mainly attributed to the unintentional oxygen doping. In this work, we examined the Cu(I)-doping to compensate the oxygen donors.

FILM GROWTH: The reactive RF magnetron sputtering technique was applied to grow $ZnSnN_2$ thin films on alkali-free glass substrates at room temperature. We used a metal Zn:Sn target (Zn:Sn ratio = 1:1) and N₂ concentrations were fixed at 80% during the film growth. Cu-doing was done by putting Cu chips on the target.

RESULTS & DISCUSSION: Figure 1 presents the X-ray diffraction (XRD) patterns for a ZnSnN₂:Cu and ZnSnN₂ films. As seen from this figure, all the diffraction peaks were assigned to ZnSnN₂ even for the ZnSnN₂:Cu film and no impurity phase was detected. The Hall coefficients of our films were negative, indicating *n*-type conductivity. While the ZnSnN₂ film had free electron density of 2.8×10^{19} cm⁻³, Cu-doping effectively lowered the electron density down to 3.5×10^{18} cm⁻³. This indicates that Cu served as an effective electron killer in ZnSnN₂ films. The Tauc-plots for films are shown in Fig. 2. The linear extrapolations resulted in direct optical bandgaps of 2.4 eV for the undoped film. On the other hand, the bandgap of the ZnSnN₂:Cu film had a smaller value of 2.3 eV, which also suggests that Cu-doing decreases free electron density, in terms of the Burstein-Moss effect. In our presentation, we will discuss more in detail including Cu concentration, Zn/Sn ratios and annealing effect, *etc*..

Fig.1 *θ-2θ* XRD patterns for typical ZnSnN₂ films.

Fig.2 Tauc-plots for typical ZnSnN2 films.

ACKNOWLEDGEMENTS: This study was financially supported by Grant-in-Aid for Scientific Research of MEXT (JSPS KAKENHI No.: #16H04500)

REFERENCES: [1] L. Lahourcade et al., Adv. Mater., 25, 2562 (2013).