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Commanding the full electromagnetic (EM) spectrum (near 1 MHz to around 0.3 THz), which includes 

generation, modulation, wireless transmission, and detection by use of photonic approaches, plays an 

important role in modern electronic warfare, THz bandwidth measurement instruments (network analyzer), 

and the next-generation of wireless communication at the millimeter-wave or THz wave bands [1,2]. An 

ultra-fast photodiodes (PDs) serves as the key complements in this system. In this paper, we review our 

recent work about near-ballistic uni-traveling carrier photodiodes (NBUTC-PDs) [3,4] at THz regime. 

Figure 1 shows the conceptual band diagram of three kinds of device structure.  Device A is the typical 

UTC-PD, B and C is the near-ballistic UTC-PD (NBUTC-PD) structure [3,4].  As compared to device A, 

we can clearly see that there is an additional n- and p-type charge layer in the collector layer of device B 

and C, respectively.  The purpose of such two layers is for controlling the E-field distribution and 

suppressing the space-charge screening effect or inter-valley scattering effect of electrons [4]. In our 

previous works [3,4] the flip-chip bonding packages of NBUTC-PD has been adopted to enhance the 

efficiency and benefit optical alignment. In addition, the device heating can be minimized by bonding the 

active PD onto high thermal conductivity substrate (AlN).  Figure 2 shows the measured 

optical-to-electrical (O-E) frequency response of NBUTC-PDs under 3mA output photocurrents.  We can 

clearly see that > 300 GHz O-E bandwidth can be achieved under a 50  load with high output 

photocurrent.  In order to boost the photo-generated THz power, a femto-second optical pulse train system 

has been established [4].  Figure 3 shows the photo-generated THz power under short pulse train and 

sinusoidal excitations.  Compared with optical sinusoidal signal excitation, a 3-dB enhancement in output 

power can be achieved.  Furthermore, both devices can have strong and fast bias modulation 

characteristics [4]. It leads to their applications for THz radar [5] or wireless communication systems [6].                  
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Figure 1. Conceptual band diagrams of (a) 
Device A: UTC-PD, (b) Device B: NBUTC-PD 

with n-charge and (c) Device C: NBUTC-PD 

with p-charge layers 

Figure 2. The bias dependent (-0.5, -0.7, and 
-1V) O-E frequency responses of 

NBUTC-PD (n-charge) with a 3 m active 

diameter of PD measured at 3 mA output 
photocurrent. 

Figure 3. The measured photo-generated MMW 

power of NBUTC-PD (n-charge) with a 3 m 

active diameter of PD versus photocurrent 

under sinusoidal (open symbol) and pulse train 
(close symbol) excitations at 280 GHz 

operation frequency. Solid line is ideal trace for 

100% modulation depth and 50 load. 
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