電界塗布法により製膜された P3HT:PC₆₁BM 粒子の構造解析

Structural analysis of P3HT:PC61BM particles fabricated by electrospray deposition

^O大橋 昇¹、吉田 一貴¹、桑野 航平¹、渡邊 康之¹、小金澤 智之²

(諏訪東京理科大エ¹、高輝度光化学研究セ²)

^oNoboru Ohashi¹, Kazuki Yoshida¹, Kouhei Kuwano¹, Yasuyuki Watanabe¹, Tomoyuki Koganezawa², (Faculty of Eng., Tokyo Univ. of Sci., Suwa¹, JASRI²); E-mail: Nohashi@rs.tus.ac.jp

プリンティングデバイス用の新たな製膜法である静電塗布法 (ESD) は、^[1]溶媒の吐出から基板 付着までの乾燥過程が製膜条件により変化する。ESD は有機太陽電池の作製にも利用されるが、 高性能化に欠かせないバルクヘテロ構造 (BHJ) は乾燥過程の違いにより構造が大きく異なる。^[2] そこで今回、ESD により噴霧された有機半導体粒子の結晶構造を解析したので報告する。

構造評価に用いた試料は、超音波および UV/O₃ 洗浄を行ったガラス基板に対し有機半導体を ESD 成膜したものである。溶液はクロロベンゼン溶媒 1 ml に対し Poly(3-hexylthiophene-2,5-diyl) (P3HT)を 20 mg、[6,6]-Phenyl C₆₁ butyric acid methyl ester (PC₆₁BM)を 15 mg 混合したものである。 ESD は ES-2000S (*Fuence*) にて行った。ノズル先端内径は 0.52 mm、ノズルー基板間距離は 5 cm で、印加電圧は 10–20 kV、流量は 10–30 μ L/min、ノズルの掃引速度は 20 mm/sec とした。試料は 放射光施設 SPring-8 (*BL46XU*) にて、すれすれ入射 X 線回折法(GIXD)による構造解析を行った。

図 1(a)に得られた試料の顕微鏡写真を示す。噴霧された液滴がドット状に成膜されている事が 分かった。図 1(b)に GIXD の測定結果を示す。ESD の最適条件では、P3HT と PC₆₁BM 共に結晶ピ ークが現れ、さらに面外配向を示した。これは、最も高い太陽電池特性を示す構造である。^[2]表 1 に結晶化の条件を示す。ESD の成膜条件により、様々な構造が出現することがわかった。

[1] T. Fukuda et al., JJAP **51**, 02BK12 (2012); 田中 光ほか、第 76 回応用物理学会秋季学術講演会 13p-PA4-16 (2015). [2] K. Sasaki et al., Appl. Phys. Express **6**, 041601 (2013).

謝辞 本研究の一部は、理科大学重点課題特別研究推進費の助成を受け実施した。また、X線構造解析は放射光施 設 SPring-8(*BL46XU*)にて行われた。丸山伸伍博士、宮寺哲彦博士ほか、関係者各位に感謝する。

表1 成膜条件による P3HT: PC61BM 試料構造の違い。

上段は P3HT、	下段は PC ₆₁ BM の結果。
-----------	------------------------------

	6 kV	10 kV	15 kV	20 kV
1 μl/min	結晶無し	面外配向	結晶無し	結晶無し
	結晶無し	無配向	非晶質	非晶質
10 µl/min	面外配向	面外配向	面外配向	結晶無し
	無配向	無配向	面外配向	非晶質
20 µl/min	面外配向	面外配向	面外配向	結晶無し
	無配向	無配向	非晶質	非晶質
30 µl/min	面外配向	面外配向	面外配向	面外配向
	無配向	無配向	無配向	非晶質