Enhancement of $L2_1$ ordering and spin-polarization of Co$_2$FeSi thin film by substitution of Fe with Ti

Jiamin CHEN1,2, Y. Sakuraba2, Y. Miura3, T. Furubayashi2, and K. Hono2,1

1University of Tsukuba, 2National Institute for Materials Science, 3Kyoto Institute of Technology

Introduction

According to theoretical calculation reported by Miura et al.1, Co$_2$TiSi Heusler alloy has high spin polarizations in the ordered $L2_1$ structure and high tolerance for the Co-related atomic disorder. On the other hand, Co$_2$FeSi Heusler alloy is known to have $L2_1$-ordering even in as-deposited state and has large exchange stiffness.2 By combining these two alloys, Co$_2$Fe$_{1-x}$Ti$_x$Si could be a promising Heusler alloy which has both high spin polarization and high $L2_1$-ordering properties.

Experiment

Samples with layer structure of MgO(001)-subs./Co$_2$Fe$_{1-x}$Ti$_x$Si(50nm), $x = 0, 0.1, 0.2, 0.3$ were fabricated using an ultrahigh vacuum magnetron co-sputtering machine. The films were annealed at temperatures ranging from 400 to 650 $^\circ$C after the deposition. The crystal structure of the films was examined by 4-axis X-ray diffraction (XRD) using Cu-Kα radiation. The AMR property was measured by Physical Property Measurement System (PPMS).

Result

Figure 1 shows the calculated density of states (DOS) for Co$_2$FeSi and Co$_2$Fe$_{0.75}$Ti$_{0.25}$Si Heusler alloy with different Ti composition x by using Generalized Gradient Approximation (GGA) +U method. From the calculation results shown in Figure 1, we found that position of Fermi level shifted from the edge of conduction band in Co$_2$FeSi toward the inside of half-metallic gap in Co$_2$Fe$_{0.75}$Ti$_{0.25}$Si alloy. Therefore, it was suggested from calculation that half-metallic property at finite temperature can be improved by partly substitution of Fe with Ti due to the shift of E_F toward the center of half-metallic gap.

The XRD patterns for 50 nm-thick CFTS epitaxial films on MgO (001) single crystal substrate annealed at 650$^\circ$C with different x are shown in Figure 2. The strong (002) super-lattice peak, indicating a highly B2-orderd structure, was observed in all CFTS films. The position of (004) fundamental peak gradually shifted toward higher 2θ angel with increasing x, suggesting a reduction of out-of-plane lattice constant with higher Ti content.

In order to check the degree of $L2_1$ ordering of CFTS thin films, the ratio of $L2_1$-superlattice (111) peak intensity to fundamental (004) peak intensity $I_{L2_1}^{obs}$ as a function of Ti composition is plotted in Figure 3. In the case of Co$_2$FeSi thin film, a high annealing temperature of 650$^\circ$C was needed to achieve the $L2_1$ ordering crystal structure. When substituting 10% of Fe with Ti, we found that the $L2_1$ ordering started to appear at 500$^\circ$C. The $L2_1$ ordering temperature was further reduced to 400$^\circ$C when the Ti composition rises up to 20%. These results clarify that the driving force for $L2_1$ ordering can be significantly improved by small amount of substitution (10-30%) of Fe in Co$_2$FeSi with Ti, which can be explained by higher tolerance for Co-related atomic disorder in Co$_2$Ti-based Heusler alloy compared with Co$_2$Fe-based Heusler alloy as suggested from the calculation of the formation energy.3

Reference