Ferromagnetic resonance study on Y-type hexaferrite Ba$_{0.5}$Sr$_{1.5}$Zn$_2$Fe$_{12}$O$_{22}$

Osaka Univ., Japan1, Inha Univ., Korea2, KBSI, Korea3, Sogang Univ., Korea4

1Jaehun Cho1,2, Nam-Hui Kim2, Jungbum Yoon2, Kimyung Song2, Namjung Hur2, Chun-Yeol You2, Seung-Young Park3, Myung-Hwa Jung4, Yuji Hiraoka1, Tsuyoshi Kimura1, Kohei Nawaoka1, Shinji Miwa1, and Yoshishige Suzuki1

E-mail: cho@spin.mp.es.osaka-u.ac.jp

Hexaferrites have attracted considerable interests as the variety of structural and chemical variations which enable a large degree of flexibility in their magnetic phases. It has been reported Ba$_{0.5}$Sr$_{1.5}$Zn$_2$Fe$_{12}$O$_{22}$ shows magnetically induced ferroelectricity and a magnetoelectric effect related to modifications of a spiral magnetic structure by applying a magnetic field. The magnetic structure in the ferroelectric phase is stabilized only in the intermediate magnetic field regime (intermediate-III phase) and does not seem to essentially differ from the nonpolar phase in the lower magnetic field (intermediate-II phase). Observation of any subtle difference in the intermediate magnetic phases can be invaluable in understanding microscopic mechanism of the magnetically induced ferroelectricity in Ba$_{0.5}$Sr$_{1.5}$Zn$_2$Fe$_{12}$O$_{22}$.

In this study, single crystals of Ba$_{0.5}$Sr$_{1.5}$Zn$_2$Fe$_{12}$O$_{22}$ are grown from Na$_2$O-Fe$_2$O$_3$ flux and we employed vector network analyzer ferromagnetic resonance (VNA-FMR) to investigate the magnetic phase diagram of Ba$_{0.5}$Sr$_{1.5}$Zn$_2$Fe$_{12}$O$_{22}$. Fig. 1(a) shows FMR spectra with increasing field at 100K. By employing the VNA-FMR analysis, we found new magnetic dynamic phases within the intermediate-II state. (We refer to the phases as intermediate-IIA and -IIB phases.) In the two phases, distinguishable VNA-FMR spectra were obtained, as shown in Fig. 1(b).

This work was supported by ImPACT Program of Council for Science, Technology and Innovation.

Fig. 1 (a) FMR spectra at 100K
(b) Magnetic Phase diagram