Ba₂NaNb₅O₁₅の輸送及び熱電特性

Transport and thermoelectric properties of Ba₂NaNb₅O₁₅

[°]掛本博文¹、常盤祐汰²、渡邊拓哉³、小澤健介³、入江寬^{1,2,3}

(1.山梨大学 クリーンエネルギー研究センター、2.工学部、3.大学院 医学工学総合教育部)

^oH. Kakemoto¹, Y. Tokiwa², T. Watanabe³, K. Ozawa³ and H. Irie^{1,2,3}

(1. Clean Energy Research Center, 2. Faculty of Engineering,

3. Graduate school of Medical and Engineering Science Department of Education, Univ. of Yamanashi)

E-mail: hirie@yamanashi.ac.jp

実験と計算 Ba₂NaNb₅O₁₅ (BNN)は BaNb₂O₆ (BN)とNaNbO₃ (NN)を混合、焼結(1300°C 3h) し、還元処理(1100~1200°C 5h)を行い作製した (試料サイス^{*}: 5.5mmx5.6mmx0.5mmt)。²⁾ 電極を van der Pauw 配置(Au, 1mmのとし、ホール測定 ((株)東陽テクニカ Resi-test 8300、印加磁場 0.45 T) により試料の輸送特性の取得を行った。^{*)}計算 は、フェルミ積分($F_s = \int \xi^s d\xi / [\exp(\xi - \zeta_F) + 1]$ 、還 元エネルギー: $\zeta = E_F / k_B T$,緩和時間: $\tau = \tau_c \varepsilon^{s-1/2}$)を 用いて、ゼーベック係数($S=(k_B/e)((s+5/2)F_{s+3/2}/$ $(s+3/2)F_{s+1/2}-\zeta_{F}$))、導電率($\sigma=(4e^{2}N_{\rm B}\tau_{o}/3\pi^{1/2}m^{*})$ $(s+3/2)F_{s+1/2}(\zeta_{P}), N_{B}:有効状態密度)$ について検討した。 3.4)上記の計算では、キャリア密度 (n=2x10¹⁸ cm⁻³)と有効質量(m*)は、ホール測定 で得られた値を用いた。さらに、無次元性能指数($ZT=S^2\sigma T/k$)を $ZT=S^2/[L+\kappa_{ph}/\sigma(m^*)T]$ とし、こ こで熱伝導率(κ)は $\kappa = \kappa_{el} + \kappa_{ph} = L\sigma T + \kappa_{ph}$ 、 κ_{el} :電子 熱伝導率、K_{ph}:格子熱伝導率、L:ローレンツ数) として計算した。

結 果 図 1 に(a)ゼーベック係数(S)、(b) 導電 率(σ) 対 還元エネルギー(ζ_i)を示す。図 1(a)よ り、S は ζ_i の増加により単調減少 (Ioffe の現象 論 と 合 致) し た 。 図 1(b) で は 、 実 験 値: $\sigma = ne\mu_{drift} = ne^2 \tau/m^*$ より、有効質量(m^*)は、約 3.0m と求まり、 σ は m^* に依存する small polaron 伝導 ($\sigma(m^*)$)であることを確認した。^{**}

*測定を室温から 250℃ の範囲で計画している。 **得られたµ_{Hall} の温度依存性より、ホッピング伝導に ついての調査を計画している。

図 1 Ba₂NaNb₅O₁₅の(a)ゼーベック係数および (b)導電率 対 還元エネルギー特性 (*s*=3/2).

図2に無次元性能指数(ZT)を輸送および熱電 測定による実験値を用いて、計算: $ZT=S^2/[L+\kappa_{ph}/\sigma(m^*)T]$ した結果を示す。²⁾計算 では、 ζ_F 、 m^* の関数とし、L および k_{ph} は定数 $L\sim 4 \times 10^{-7}$ WΩ/K²、 $k_{ph}\sim 0.5$ W/mK として行った。

図 2 Ba₂NaNb₅O₁₅の無次元性能指数 対 還元エネ ルギー、有効質量 イメージ (*s*=3/2).

以上より、BNN に還元処理を行い、small polaron 伝導: $\sigma(m^*)$ が得られた場合、図 2 より $m^*/m=3\sim5$ および $G=0\sim2$ eV の領域で、ZT の増 強が可能であることが分かった。

謝 辞本研究の一部は、山梨大学・地域イノベーション、科学研究費補助金・基盤(C)により実施された。ホール測定にご協力頂いた、大阪府立産業技術総合研究 所・筧芳治様に感謝申し上げます。

[1] Lee et al., APL 96, 031910 (2010).

[2] 掛本、河野、入江、第 62 回応用物理学会春季学術 講演会、12p-A22-5 2015 年 3 月 12 日(東海大学).
[3] Hicks et al., PRB47 16631 (16631).
[4] Okuda et al., PRB63, 113104 (2000).