Characterization of sol-gel derived Nb doped ZrO₂ thin film

^oJooNam Kim¹, Tokumitu Eisuke¹ (1.Japan Advanced Institute of Science and Technology) E-mail: e-toku@jaist.ac.jp

Amorphous high-k dielectrics such as HfO₂ and ZrO₂ are now utilized in advanced Si-MOSFETs as gate insulator and major concerns for these films are dielectric constant and leakage current. The addition of rare earth elements, such as La Gd, Dy and Er, is reported to stabilize the phase of ZrO₂ at high temperature.¹ In this work, fundamental properties of niobium (Nb) doped zirconium oxide thin film was studied. A sol-gel process is applied to prepare the film with an annealing temperatures of 500~990 °C in air (N₂:O₂=3:1) atmosphere. The Nb-doped ZrO₂ was deposited on the highly doped silicon substrate to form the metal-insulator-semiconductor (MIS) structure. The film thickness was 25 nm. Top and bottom electrode was Au. Figure 1 shows the capacitance-voltage (C-V) curve of MOS structures with undoped and Nb-doped ZrO₂ films, annealed at 800°C. Higher accumulation capacitance, which includes the effect of interfacial layer, was plotted as a function of doping concentration in figure 2. The Nb 8% doped ZrO₂ shows the highest dielectric constant. The investigations on surface morphology, XRD and other electrical properties of Nb-doped ZrO₂ films prepared by the sol-gel method will be presented.

Figure 2. Dielectric constant tendency with variation Nb-doping density.

[1] CZ Zhao et.al, "Dielectric relaxation of La-doped zirconia caused by annealing ambient", nanoscale research letters,vol.6, pp.48. (2011)