高温・高湿環境下でのシリコン窒化膜表面酸化 Surface oxidation of silicon nitride films under high temperature and humid environment 三菱電機(株)高周波光デバイス製作所 [○]奥 友希 志賀俊彦 戸塚正裕 渡辺 斉 Mitsubishi Electric Corp., [○]T. Oku, T. Shiga, M. Totsuka, H. Watanabe E-mail: Oku.Tomoki@ap.MitsubishiElectric.co.jp

はじめに:欠陥濃度が高いSiN_x膜の高温・高湿下での耐湿性の 劣化原因は膜の酸化である[1].前報ではH₃O⁺,OHの攻撃でNH₂ 表面終端がOHに置換(求核置換反応)することを示した.本報告 では更に深部1,2層の酸化反応を分子軌道計算で解析した.

計算:空間群 C_{6h}^{2} (P6₃/m)のSi₃N₄結晶の表面をOH終端した 270 個の原子からなるクラスターを作成し, Fig.1 に示す様に表面窒素原子 をH₃O⁺の水素原子で, シリコン原子をOH の酸素原子で攻撃させた際 の生成エネルギー \triangle EをMO-G (半経験的分子軌道法)を用いて 計算した.計算した膜は前回(Film No.1)に加えて合計 8 種

類で、導入欠陥と攻撃+(hの窒素・ >)コンの構造をTable.1 に示す.反応は 2 次なのでN-H距離(d_{N-H})及びSi-O距離 (d_{Si-O})の関数として \angle Eを求め、SiN_x 膜表面から遠い位置(Initial state)から Saddle point経由で攻撃(Final state)ま でをポ $\overline{>}>>+$ /シャルエネルギー曲面上でエネルギー 最少/レートに沿って求めた.

結果: Fig.2 に示す様に深部 1,2 層の酸化反応 の∠E は Film No. 1 と比べて Saddle point, Final state ともに大きい. 特に, Film No. 3, 2, 5, 8, 4 は吸熱反応であるため,酸化反応が進むには他 の発熱反応と共役する必要がある.また何れの 反応も Final State で Film No.1 の様な Si-N ボン ド切断に至る∠E の大幅な低下は認めらない. 更に,欠陥の存在・種類と反応障壁低下に直接 的な関連性を見出せない. 従って,深部での酸 化反応は求核置換反応の単純な連鎖だけでは説 明できないと考えられる.

Fig. 1 Attack of H_3O+ and OH- ion on the silicon nitride surface (Film No. 4).

Table. 1 Calculated model of the SiN_x films with/without defects.

Film	Defect site		H_3O^+ attack site		OH attack site	
No	Defects	Layer	N atom	Layer	Si atom	Layer
1	No	-	-NH ₂	Termination	\equiv SiNH ₂	1st
2	No	-	=NH	1st	≡SiOH	1st
3	Si	2nd	$\equiv N$	2nd	≡SiOH	1st
4	Si	2nd	=NH	1st	≡SiOH	1st
5	Si	3rd	=NH	1st	≡SiOH	1st
6	Si	3rd	=NH	2nd	≡SiOH	1st
7	N	2nd	=NH	1st	=SiH(OH)	1st
8	N	3rd	=NH	1st	≡SiOH	1st

Fig. 2 Reaction barrier of surface oxidation for the SiN_x films with/without the defects.

[1] T. Oku, et al., CS MANTECH Conference, May 19th - 22nd, 2014, Denver, Colorado, USA, P179.