Electrical and Structural Properties of BiFeO₃-BaTiO₃ lead-free piezoelectric ceramics Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi¹, [°]Sangwook Kim¹ and Satoshi Wada¹ E-mail: swada@yamanashi.ac.jp

Lead-based piezoelectric bulk ceramics, such as Pb(Zr,Ti)O₃, are used for various devices, because of their excellent piezoelectric properties. However, the toxicity of lead and its high vapor pressure have led to a demand for alternative lead-free piezoelectric materials that are environmentally benign from the viewpoint of sustainable development. Recently, the BiFeO₃-BaTiO₃ ceramics are kind of replacement lead-based piezoelectric materials. The BiFeO₃-BaTiO₃ lead-free piezoelectric ceramics have a potential to be applied at high operation temperature, because of their high curie temperature. The phase diagrams of BiFeO₃-BaTiO₃ lead-free ceramics were reported two different phase diagram. M. M. Kumar *et al.* reported that structure was changed from rhombohedral to cubic at 0.67BiFeO₃-0.33BaTiO₃ composition. On the other hand, S. O. Leontsev and R. E. Eitel reported that structure was changed from rhombohedral to pseudo-cubic structure at 0.75BiFeO₃-0.25BaTiO₃ composition. The information of phase transition composition is unclear in BiFeO₃-BaTiO₃ system.

In this study, $(1-x)BiFeO_3-xBaTiO_3$ (x = 0.25, 0.30, 0.33, 0.35, and 0.40) bulk ceramics were formed using solid state reaction method. The crystal structures were investigated using x-ray diffractometer. The crystal structures of solid solution ceramics are rhombohedral for 0.80BiFeO_3-0.20BaTiO_3, an intermediate structure between rhombohedral and pseudo-cubic for 0.75BiFeO_3-0.25BaTiO_3 and a pseudo-cubic structure from x = 0.30 to 0.40, respectively. The lattice parameters and cell volumes were increased with increasing BaTiO_3 contents. The shapes of polarization-electric field hysteresis loops were changed from hard-type to soft-type, because BiFeO_3 and BaTiO_3 are hard-type and soft-type ferroelectrics. The remanent polarization were highest observed ~34 μ C/cm² at 0.75BiFeO_3-0.25BaTiO_3 composition. The coercive field were decreased with increasing BaTiO_3 contents. The piezoelectric properties, strain value from Strain – Electric field curves, were observed ~ 0.20% with 60 kV/cm in 0.70BiFeO_3-0.30BaTiO_3 composition. The negative strain were decreased with increasing BaTiO_3 contents, because of decreasing coercive field. More detailed properties will be discussed in presentation.