SiGe 基板の酸化での pog と温度操作による GeOg 形成の抑制

Thermodynamic Control of GeO₂ Suppression in SiGe Oxidation by po2 and

Temperature Manipulation

⁰宋 宇振、鳥海 明(東大院工)

^oWoojin Song¹, Akira Toriumi² (The University of Tokyo)

E-mail: song@adam.t.u-tokyo.ac.jp

1. Introduction

The interface control between oxide and SiGe has become an issue for the application to gate stack. Most papers so far have reported the oxidation behavior of SiGe substrate [1,2]. There have been little thermodynamic discussion on oxide growth on SiGe substrate, in spite of the large free energy change between SiO₂ and GeO₂.

Chung *et al.* demonstrated YSiO_x/SiGe gate stack [3]. They proved thermodynamically that the control of p_{O2} or the supply of O₂ to the SiGe interface may be the key to preferentially grow SiO₂ layer. Although they focused on the formation of Si and Ge elements in their study, it is evident that there exist other possible chemical reactions that play a significant role during oxidation. In this study, we will discuss thermodynamics of SiGe oxidation more detail and its manipulation for preferential SiO₂ growth.

2. Thermodynamics of SiGe oxidation

In the oxidation process of $Si_{0.5}Ge_{0.5}$ substrate, both GeO_2 (reaction path I) and GeO (reaction path II) participate in the SiO_2 formation. In Reaction Path I, the formation of GeO_2 is controlled by the competition between the following oxidation and reduction reactions:

$$\operatorname{Ge}(s) + \operatorname{O}_2(g) = \operatorname{GeO}_2(s), \tag{1}$$

 $Si(s) + GeO_2(s) = SiO_2(s) + Ge(s).$ (2) The equilibrium temperature for preferential SiO_2 growth is described as:

$$T_{e1} = \frac{\Delta H_2^o - \Delta H_1^o}{\Delta S_2^o - \Delta S_1^o - R \ln p_{02}},$$
 (eq. 1)

where ΔH_x° and ΔS_x° are the enthalpy and entropy of reaction *x* (*x*= 1, 2), *R* the gas constant, and p_{02} the partial O₂ pressure. In order to grow pure SiO₂ layer in the Reaction Path I, *lower* p_{02} and *higher* temperature are required. Since there is no other variable in eq. 1, the T_{e1} is exhibited as a fixed borderline (plotted as a dashed line in Fig. 1) between the pure SiO₂ and mixed oxide growth region across the p_{02} -*T* diagram.

On the other hand, in Reaction path II, the formation of GeO is controlled in the same way: 22 + 22 = 22 + 22 = 22

 $2Ge(s) + O_2(g) = 2GeO(g),$ (3) Si(s) + 2GeO(g) = SiO₂(s) + 2Ge(s). (4) The equilibrium temperature between the reacting

The equilibrium temperature between the reaction of GeO formation (3) and reduction (4) can be described as follows:

$$T_{e2} = \frac{\Delta H_{3}^{o} - \Delta H_{4}^{o}}{\Delta S_{3}^{o} - \Delta S_{4}^{o} - R \ln \frac{p_{GeO}^{4}}{p_{O2}}}$$
(eq. 2)

Note that now the p_{GeO} term is included and T_{e2} is subject to change by it. (plotted solid lines in Fig. 1). In equilibrium state, at a given temperature, lower p_{O2} yields lower p_{GeO} and eventually the SiO₂ formation by reduction reaction of GeO decreases. Combining the two SiO₂ preferential growth behaviors above, it is expected that lower p_{O2} and lower temperature (but sufficiently larger than T_{e1}) are necessary to grow SiO₂ and minimize the impact of GeO. It is important to note that for a given p_{GeO} , the required temperature and p_{O2} are limited to the cross-area between the upper part of T_{e1} and bottom area of T_{e2} . The area may vary by T_{e2} depending on the aimed p_{GeO} .

3. Conclusion

Preferential SiO₂ growth processes through GeO₂ and GeO were discussed. Following the Reaction Path I (through GeO₂), the preferential SiO₂ growth by GeO₂ reduction can be achieved by lower p_{O2} and higher temperature. In the Reaction Path II (through GeO), the equilibrium temperature varies by p_{GeO} , and the preferential SiO₂ growth by GeO reduction decreases as the p_{O2} decreases. As a result, low p_{O2} and temperature (but $T < T_{e1}$) are necessary to grow pure SiO₂ layer and minimize the impact of GeO.

4. References

[1] F. K. LeGoues *et al.*, APL 54 (1989) 644; [2] T. David *et al.*, JPCC 119 (2015) 24606; [3] C.-T. Chung and A. Toriumi, IEDM (2015).

Fig. 1. p_{O2} -T diagram for SiO₂ preferential growth.