可視光応答型光触媒材料としてのチタン酸窒化物の理論提案

Titanium Oxynitride as a Visible-light Photocatalyst

^O青木祐太¹、Sinisa Coh^{2,3}、Marvin L. Cohen^{2,3}、Steven G. Louie^{2,3}、斎藤晋¹

(1. 東工大理、2. UC バークレー、3. ローレンス・バークレー国立研究所)

[°]Yuta Aoki¹, Sinisa Coh^{2,3}, Marvin L. Cohen^{2,3}, Steven G. Louie^{2,3}, and Susumu Saito¹

(1. Tokyo Inst. Tech., 2. UC Berkeley, 3. Lawrence Berkeley National Lab.)

E-mail: y-aoki@stat.phys.titech.ac.jp

Over the decades, impurity doping into TiO_2 is one of the hottest subjects in the research for realizing high-performance visible-light photocatalytic materials. Especially, N doping is one of the most successful methods to make TiO_2 visible-light-active. Importance of N is that the N 2p state redshifts the absorption, which is originally determined by the O 2p state. However, absorption of N-doped TiO₂ in the visible-light region is much weaker than that in the ultraviolet region. This should be because the concentration of N is limited in N-doped TiO₂. On the other hand, the system with the maximum N-concentration limit, TiN, is metallic because the valence number of Ti is +3 and an excess electron per Ti atom exists. Therefore, one needs to keep the valence number of Ti +4 in order to achieve the semiconducting system with high N concentration. In order to meet the requirement, we propose titanium oxynitride with the composition Ti_2N_2O . The structure of our proposed Ti_2N_2O is based on that of corundum-type Ti_2O_3 . We investigate the electronic structure and the energetics of Ti2N2O within the framework of the density-functional theory (DFT). We find that the band gap of Ti₂N₂O is smaller than that of rutile TiO₂ and anatase TiO₂ by 0.79 eV and 1.04 eV, respectively. We also find that the band-gap reduction in Ti₂N₂O is achieved by upshift of the valence band maximum (Figure 1). Such a band structure is suitable for photocatalytic water decomposition. Finally, we conduct the energetic analysis on Ti_2N_2O and N-doped TiO_2 . It is found that the energy per N atom required to form Ti₂N₂O from Ti₂O₃ is smaller than the impurity defect formation energy of N-doped TiO₂.

Figure 1: Total and projected density of states of Ti_2N_2O compared to those of anatase TiO_2 , N-doped anatase, rutile TiO_2 , and N-doped rutile.