In_{1-x}Ga_xSb 量子井戸構造の電気的特性の評価 Electron transport properties of In_{1-x}Ga_xSb quantum well structure [○]原田義彬,岡直希,藤川紗千恵,藤代博記(東理大院基礎工) [○]Y. Harada, N. Oka, S. Fujikawa, H. I. Fujishiro (Tokyo University of Science) E-mail: 8115637@ed.tus.ac.jp

<u>はじめに</u>: 現在までに報告されている高電子移動度トランジスタ(HEMT: High Electron Mobility Transistor)の遮断周波数 (f_{T})の最高値は、InAs 量子井戸(QW)チャネルを用いた 725 GHz であ る^{II}。InSb は InAs よりも電子有効質量(m^*)が小さく高い電子移動度(μ)を示すことから、InSb QW を用いた HEMT は InAs QW の特性を超えることが期待される。しかしながら小さい m^* に起因 して電子状態密度が小さく、また Al 組成比に比例して AlInSb バリア層から圧縮歪みが印加される ため、深い InSb QW を形成することが難しい^[2]。そのため InSb QW に蓄積されるシート電子濃度 (N_s)は、1×10¹² cm⁻²程度の比較的低い値に制限される。また QW 内のラフネス散乱は m^* が小さ いほどその影響が大きくなる^[3]。そこで我々はチャネルを InGaSb にして m^* を InSb と InAs の間に 設計し、さらに InGaSb と格子整合する AlInSb バリア層を用いて深い QW を形成することにより、 $\mu と N_s$ が共に高い QW チャネルを実現することを考えた。本研究では、In_{1-x}Ga_xSb QW(x = 0.15~ 0.6)を作製して電気的特性を評価し、InSb QW と比較する。

実験: 図 1 は、MBE 法により GaAs (100) 基板上に成長した InGaSb QW の層構造を示す。AlInSb にドープされた Te はドナー準位を形成し、その活性化エネルギーは Al 組成比に依存することが 知られている^[4]。そこで AlInSb バリア層の Al 組成比を Te が深い準位を形成しない 0.4 とし、In_{1-x}Ga_xSb チャネル層の Ga 組成比 x を Al_{0.4}In_{0.6}Sb と格子整合する 0.35 を中心に 0.15~0.6 の範囲 で変化させた (8 試料)。In_{1-x}Ga_xSb チャネル層の厚さは 20 nm とした。チャネル層付近の成長温 度は 455 ℃ とした。Ga 組成比 x はバルク試料を用いて XRD により校正した。ホール効果測定に より、作製した In_{1-x}Ga_xSb QW の μ 、 N_s 、シート抵抗 (R_s) を求めた。

<u>結果</u>: 図 2 は、擬ポテンシャル法により計算した $In_{1-x}Ga_xSb$ (x = 0, 0.4, 0.6) と InAs の m^* の歪み (ε) 依存性を示す。図中、矢印は QW を形成したときに印加される ε を示している。圧縮歪 ($\varepsilon < 0$) は m^* を増加させ、引っ張り歪み ($\varepsilon > 0$) は m^* を減少させる。本実験で用いた $In_{1-x}Ga_xSb$ の m^* はすべて圧縮歪下の InAs よりも小さいことがわかる。図 3 は、測定により得られた Ga 組成比 x と μ および N_s の関係を示す。 μ は $Al_{0.4}In_{0.6}Sb$ バリア層と格子整合する x = 0.35 の時に、12,500 cm²/Vs の最大値を示した。この時の N_s は 2.3×10^{12} cm⁻²であった。x = 0.15 における μ の急激な 減少は、格子緩和による転位の発生を示唆している。図 4 は、Ga 組成比 x と R_s の関係を示す。 R_s は、x = 0.35 の時に 210 Q/□の最小値を示した。InSb QW の特性: μ = 16,500 cm²/Vs, N_s = 1.2× 10^{12} cm⁻², R_s = 320 Q/□^[5]と比較すると、 $In_{0.65}Ga_{0.35}Sb$ QW は μ が 24 %が減少し、 N_s が 92 %増加し た。これにより R_s が 34 %減少した。

<u>参考文献</u>:

 [1] X.B. Mei et al., Abst. CSW2015, M-1-3.pp.1034.
 [2] 長井他、第 74 回秋季応物 19p-D7-2 (2013).

 [3] S.Hatushiba et al., Abst. CSW2015, Th1GM8.4, pp.121.
 [4] P.Hill et al., Applied Physics Letters 87,092105 (2005).

 [5] S. Fujikawa, et al., Journal of Crystal Growth, 425, 64 (2015).

Fig.1. Schematic layer structure of $In_xGa_{1-x}Sb$ QW (x = 0.15 ~ 0.6).

Fig.2. Dependence of electron effective mass (m^*) in In_xGa_{1-x}Sb (x = 0.4, 0.6, 1) and InAs on strain ratio (ε).

Fig.3.Dependence of mobility (μ) and sheet electron density (N_s) of $In_xGa_{1-x}Sb$ QW on Ga content x.

Fig.4. Dependence of sheet resistance (R_s) of $In_xGa_{1-x}Sb$ QW on Ga content x.