Ar プラズマエッチングを用いた二段階ゲートリセス構造を持つ InGaAs 系 HEMT の試作とその特性

InGaAs-HEMTs with two-step recessed gates by Ar plasma etching 東北大通研,○細谷 友崇、尾辻 泰一、末光 哲也

RIEC, Tohoku Univ., °T. Hosotani, T. Otsuji, T. Suemitsu

E-mail: tomo@riec.tohoku.ac.jp

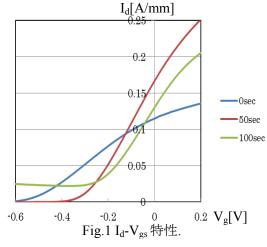
1, はじめに

InGaAs 系 HEMT はミリ波・サブミリ波帯でのキーデバイスとして注目されている。素子のバラッキを抑えるため、ゲート電極とチャネル部分の間に InP エッチストップ層を挿入したエピ構造が幅広く用いられている。しかし、この InP エッチストップ層はゲート電極とチャネル層の距離を広げてしまい、HEMT の高性能化という面からは望ましくない。

本研究では、Ar プラズマによる異方性エッチングを用いて InP エッチストップ層を選択エッチングしたうえでゲート電極を蒸着する、というプロセス[1]を用いて HEMT を試作した。以下にデバイスの測定結果及び考察を報告する。

2、デバイス構造・測定結果

試作には InP 基板上に MOVPE 法によって成長した InAlAs/InGaAs HEMT エピタキシャル結晶を用いた。HEMT 層構造は、表面から n-InGaAs/InAlAs キャップ層 30nm、InP エッチストップ層 6nm、InAlAs バリア層 5nm、 n-InAlAs キャリヤ供給層 5nm、 InAlAs スペーサ層 3nm、 InGaAs チャネル層 15nm、 InAlAs バッファ層 100nm であった。 InP エッチストップ層のエッチングには SAMCO 社製 RIE-10NR を用い、Ar ガス流量 40sccm、Ar ガス圧力 2Pa、RF 出力 50W の条件で行った。 Ar エッチング時間ごとに試作したゲート長 200nm、ゲート幅 100um のデバイスの I_d - V_{gs} 特性を Fig.1 に示す。 Ar エッチングにより関値が正方向に変化した。 Ar エッチングを適用した素子の関値は、InP エッチストップ層を省いたゲート-チャネル間距離で計算した関値とほぼ一致しており、二段階リセス構造が実現できていると推測される。また、最大相互コンダクタンス (g_m) 及び遮断周波数 (f_T) は Ar エッチングを 50 秒行ったもので最大となり、エッチング時間を 100 秒に増やした素子では、 g_m 及び f_T の低下とオフ電流の増加が観測された。


Ar エッチング時間 50 秒のデバイスに注目し、各デバイススペックでゲート電流(I_g)を比較したものを Fig.2-3 に示す。同じゲート幅(W_g)ではゲート長(L_g)が長いほど I_g は増えたが、同じゲート長では、ゲート幅による I_g の依存は見られなかった。

3、考察

Ar エッチングによる HEMT の性能向上を確認できた。しかし今回のエッチング条件ではオーバーエッチングによる g_m の劣化とリーク電流の増加が発生し、選択エッチングの機能を果たすには不十分であった。また、 I_g はゲート幅に依存しないところでリークしていることがわかった。このことより、メサ端などゲート長によらない箇所に I_g が集中していると思われる。今後は Ar プラズマエッチングについてより低ダメージとなる条件を検討し、閾値の均一性・再現性を確保可能な選択エッチングを確立し、リーク電流を抑えた InGaAs 系 InGaAs 所 InGaAs InGaS InGaS

○謝辞

本研究は、東北大通研付属ナノ・スピン実験施設で行われた。

[1] T. Suemitsu, et al., IEEE Trans. Electron Devices 49 (2002) 1694.

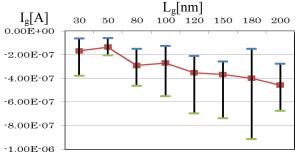


Fig.2 V_{ds} =0.8V, V_{g} =-0.1V, W_{g} =100um $\circlearrowleft O$ I_{g} .

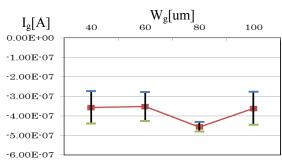


Fig.3 V_{ds} =0.8V, V_{g} =-0.1V, L_{g} =200nm $\circlearrowleft O$ I_{g} .