## New finding of ferroelectricity of N doped HfO<sub>2</sub> films

Lun Xu<sup>1\*</sup>, Tomonori Nishimura<sup>1</sup>, Shigehisa Shibayama<sup>1,2</sup>, Takeaki Yajima<sup>1</sup>, Shinji Migita<sup>3</sup>, and Akira Toriumi<sup>1</sup>

1. Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

2. JSPS research fellow, PD

3. National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8569, Japan

\* E-mail: xulun@adam.t.u-tokyo.ac.jp

The ferroelectricity of  $HfO_2$  can be enhanced by moderate cation doping, such as Si, Al, Y, Sr, and Zr.<sup>[1]</sup> For Y doped  $HfO_2$ , earlier reports indicate that tetragonal and cubic phases of  $HfO_2$  are stabilized due to trivalent Y doping induced oxygen vacancies (Vo).<sup>[2]</sup> However, it is not well understood about the origin of  $HfO_2$  ferroelectricity, and if it is related to the Vo or local chemical bonds. Here, N doped  $HfO_2$  (N:HfO<sub>2</sub>) were investigated, which indicates  $HfO_2$  ferroelectricity is more sensitive to N doping than Y doping.

In this study, N doped and Y doped 28-nm-thick  $HfO_2$  films were fabricated prepared by rf-sputtering. N<sub>2</sub>/Ar gas flow varied from 0.2/19.8 to 10/10 sccm/sccm for N:HfO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> and HfO<sub>2</sub> were co-sputtered with different power (5/80 to 20/80 W/W) for Y:HfO<sub>2</sub>. Then top Au electrodes were thermally evaporated after annealing all HfO<sub>2</sub> stacks at 600 deg C, 30 seconds in 1 atm N<sub>2</sub>.

Chemical compositions of doped HfO<sub>2</sub> were estimated by XPS. Also, the binding energy of 397eV for N 1s peaks (not shown) can be attributed to  $N^{3-}$  in N:HfO<sub>2</sub> (Hf-N bonds formation). XRD analysis (**Fig.1**) reveals that 0.1% N (atomic ratio) can hugely increase the ratio of high-symmetry phases from 30% to 85%, and further increase to 95% by 0.5% N doping. XRD also indicates N doping can suppress the crystallization process (increase HfO<sub>2</sub> crystallization temperature), while Y doping can increase it (decrease HfO<sub>2</sub> crystallization temperature).

The electrical properties of N:HfO<sub>2</sub> films were analyzed by capacitance-voltage (C-V) and polarizationvoltage (P-V) measurement, which are shown in **Fig. 2**. 0.1% N doping maximizes the ferroelectricity of HfO<sub>2</sub>, and larger than 0.5% N doping can dramatically suppress the ferroelectricity. By comparing remanent polarization and dielectric constants, we estimated that N induced HfO<sub>2</sub> phase transform direction: monoclinic phase - ferroelectric phase (orthorhombic) - tetragonal or cubic phase - amorphous phase.

In addition, we observed that ferroelectricity of  $HfO_2$  is much more sensitive to N doping than Y doping (**Fig.3**): 0.7% Y doping can maximize ferroelectricity while 0.1% N doping is enough. Here, except Vo, we think Hf-N bonds need to be seriously considered for the ferroelectricity. For few Hf-N bonds (0.1-0.3% N), both ferroelectricity and dielectric constant of  $HfO_2$  are enhanced; for moderate Hf-N bonds (0.5% N), ferroelectricity is suppressed but dielectric constant of  $HfO_2$  is still above 30; for much more Hf-N bonds (5% N), the dielectric constant decreases below 20.

In conclusion, we have demonstrated that  $HfO_2$  ferroelectricity is sensitive to N doping, which might result both from Vo and Hf-N bonds formation.

This work was supported by JST-CREST.



Fig. 1  $\theta$  -2  $\theta$  XRD scans on nondoped and 0.1% N doped HfO<sub>2</sub>

M. H. Park, et al. Addv. Mater. 27, 1811 (2015)
A. Navrotsky J. Master. Chem. 15, 1883 (2005)

**Fig.2** PE characteristics of N:HfO<sub>2</sub> films

**Fig. 3** Remanent polarization for N:HfO<sub>2</sub> and Y: HfO<sub>2</sub> films

© 2016年 応用物理学会