強誘電性 Hf0₂ 膜における分極 ドメインの減衰 Decay of polarization domain in ferroelectric HfO₂ film ^o柴山 茂久^{1,2}、徐 倫¹、右田 真司³、鳥海 明¹(1.東大院工、2.学振特別研究員、3. 産総研)

°Shigehisa Shibayama^{1,2}, Lun Xu¹, Shinji Migita³, and Akira Toriumi¹

(1. The Univ. of Tokyo, 2. JSPS research fellow PD, 3. AIST)

E-mail: shibayama@adam.t.u-tokyo.ac.jp

[研究背景] 近年 HfO₂が強誘電性を示し、強誘電性を示し得る結晶構造が、反転対称性のない直 方晶(Pca2₁)であると報告されている[1,2]。しかしながら HfO₂では、直方晶のような高対称相 は熱力学的に準安定状態なので、HfO₂膜中には様々な結晶相およびドメイン境界が存在すると考 えられる。こうした多数のドメインおよびドメイン境界の存在により、HfO₂強誘電体薄膜の信頼 性劣化が引き起こされる可能性が示唆される。信頼性の向上には、HfO₂膜中の分極ドメインの安 定性や減衰ダイナミクスの解明が重要である。本研究では、分極ドメインを直接観察するために、 ナノメートルスケールの観察が可能な、ピエゾ応答力顕微鏡(PFM)に着目した。強誘電性 HfO₂ 膜の分極ドメインを観察し、その減衰ダイナミクスを報告する。

[結果および議論] スパッタリング法を用いて約 30 nm のノンドープ HfO₂ 膜を形成し、600 °C、 30 s の熱処理を施した。分極-電界測定から、HfO₂ 膜が強誘電性を示すことを確認した (*not shown*)。 本試料を用いて PFM 観察を行った。AC 電圧は約 1 V とし、探針の共振周波数は約 300 kHz とし た。 $3 \times 3 \mu m^2$ の領域を DC 電圧 (V_{DC}) =+6.5 V において掃引後、同領域内にて、様々な面積の正 方形領域を、 V_{DC} =-6.5 V において掃引した。その後、探針を試料から遠ざけて、数分間待機した

(Fig. 1(a))。待機後、 V_{DC} =1.0 V として、3×3 μ m²の領域を掃引した。Fig. 1(b)は、掃引によって 得られた Phase 像の一部である。+6.5 V および–6.5 V を印加した領域において、180°の位相反転 が観察されたので、PFM 観察からも、HfO₂が強誘電性を示していると言える。また待機時間の増 大にともなって、正方形の角が丸まり、円形に近づいている。このことから、分極ドメインの減 衰は、正方形端よりも正方形の角の方が早いと言える。これは LiTaO₃ というペロブスカイト構造 の強誘電体でも報告されているように、ドメインウォールエネルギーの最小化を考慮することで 説明されると考えられる[3]。一方、180 min 間待機した後では、円が小さくなるだけでなく、円 内部においても分極領域が減少している。この結果は HfO₂ 薄膜の分極ドメイン自体の不安定性を 示唆している。HfO₂の強誘電性の信頼性向上のためには、HfO₂ 膜中の分極ドメイン自体のさらな る安定化が重要である。本研究は JST-CREST の支援を受けて行われた。

[1] J. Müller *et al.*, J. Appl. Phys. **110**, 114113 (2011). [2] X. Sang *et al.*, Appl. Phys. Lett. **106**, 162905 (2015).
[3] X. Liu *et al.*, Appl. Phys. Lett. **89**, 142906 (2006).

Fig. 1(a) Schematic diagram of PFM measurement. At first, V_{DC} =6.5 V was applied in 3×3 µm². Then, V_{DC} =-6.5 V was applied in 1×1 µm², 0.6×0.6 µm², 0.4×0.4 µm², and 0.2×0.2 µm², sequentially. After that, cantilever was raised up from the surface not to apply the bias and we waited for several minute. Finally, 3×3 µm² was scanned again at V_{DC} =1.0 V. In all scans, V_{AC} was set to be 1.0 V. (b) PFM phase images of without waiting and waiting time for about 60 min and 180 min. It was found the 180° phase difference and shape transformation from square to circle with increasing waiting time.