極薄 ALD-Al₂O₃ キャップ層を用いた La₂O₃/InGaAs MOS 界面の改善

Improvement of MOS Interfaces of La₂O₃/InGaAs

by Ultra-thin ALD Al₂O₃ Capping Layers

⁰張志宇^{1,2}、竹中充^{1,2}、高木信一^{1,2}(1. 東大院工、2. JST-CREST)

^oC.-Y. Chang^{1, 2}, M. Takenaka^{1, 2} and S. Takagi^{1, 2} (1.The University of Tokyo, 2.JST-CREST)

E-mail: cychang@mosfet.t.u-tokyo.ac.jp

【はじめに】近年、InGaAs 上に La₂O₃を堆積 して形成した MOS 界面では、InGaAs と La₂O₃ が相互拡散を起こすことにより、従来の Al₂O₃/InGaAs MOS 界面より低い界面準位密度 (D_{ii})が得られることが示された[1, 2]。しかし、 原子層堆積法 (ALD)で堆積した La₂O₃ は膜中 にスロートラップが多く存在する欠点がある ため、La₂O₃/InGaAs MOS キャパシタの C-V 特 性に大きなヒステリシスが見られる[2]。そこ で本研究では、ALD La₂O₃ 中のスロートラップ を低減するため、La₂O₃ の上に *in-situ* で極薄 Al₂O₃を堆積した Al₂O₃/La₂O₃/InGaAs ゲートス タック構造を試作し、その電気特性を Al₂O₃/ InGaAs 及び La₂O₃/InGaAs MOS キャパシタと 比較したので、その結果を報告する。

【実験結果】図1に(a) La₂O₃(10 nm)/InGaAsと (b) Al₂O₃ (3-cycle)/La₂O₃ (10 nm)/InGaAs O MOS キャパシタの C-V 特性を示す。図 1 に La₂O₃ の上に極薄(3-cycle)の Al₂O₃キャップ層を堆積 することによって、C-Vのヒステリシスが小さ くなることから La₂O₃ 膜中のスロートラップ が減少することが分かる。図2に表面ポテンシ ャル揺らぎモデルを用いた Conductance 法[3] で測定した D_{it}のエネルギー分布を示す。 Al₂O₃/La₂O₃/InGaAs MOS 界面は La₂O₃/InGaAs と同様に、Al₂O₃/InGaAs MOS 界面より低い D_{it} が得られることが分かる。また、Conductance 法に Brews モデル[3, 4]を適用して求めた表面 ポテンシャル揺らぎ(o,)を図 3 に示す。Brews モデルに従うと、 σ_s^2 は MOS 界面近傍の固定電 荷面密度(Nf)と界面にトラップされた電荷の面 密度(N_{it})の和に比例する($\sigma_s^2 \propto N_f^+ + N_{it}^+ + N_f^- +$ *N*_{it})。図 3 から、極薄 Al₂O₃ キャップ層形成に より、osが低下しており、MOS 界面近傍の電 荷の総量が低減していることが示唆される。 MOS 界面近傍の電荷は、クーロン散乱体とし て働き、結果として、 σ_s と MOS 界面移動度に は相関があることが報告されている[5]ことか ら、Al₂O₃/La₂O₃/InGaAs MOSFET では高い移動 度が期待できる。

 Al_2O_3 (3-cycle)/La₂O₃ (10 nm)/InGaAs 構造を 用いて作製した MOSFET の I_{S} - V_G 特性を図 4 に、その移動度特性を図 5 に示す。 Al₂O₃/La₂O₃/InGaAs MOSFET は、高い移動度を 示しており、図 3 の表面ポテンシャル揺らぎの 結果と一致していることが分かる。

【結論】 極薄 Al₂O₃ キャップ層により、 La₂O₃/InGaAs 中のスロートラップと MOS 界面 近傍における電荷の低減を実現した。この La₂O₃/InGaAs MOS 界面特性の改善により、 MOSFET の移動度が向上することを実験的に 示した。

【謝辞】InGaAs エピ基板を提供頂いた、住友化学の市 川磨氏、長田剛規氏、秦雅彦氏、山田永氏に感謝する。

【参考文献】[1] D. H. Zadeh *et al.*, *IEDM*, 2.4.1 (2013). [2] C.-Y. Chang *et al. J. Appl. Phys.*, **118**, 085309 (2015). [3] E. H. Nicollian and J. R. Brews, *MOS Physics and Technology*, New York, Wiley (1982). [4] J. R. Brews, *J. Appl. Phys.*, **43**, 2306 (1972) [5] W. Cai *et al.*, *IEEE Electron Device Lett.*, **36**, 1183 (2015)

Fig. 1 C-V curves of (a) W/La₂O₃ (10 nm)/InGaAs, (b) W/Al₂O₃ (3-cycle)/La₂O₃ (10 nm).

Fig. 2. Energy distribution of D_{it} distribution of the 3 gate stacks.

Fig. 4 $I_{\rm S}$ - $V_{\rm G}$ of the fabricated W/Al₂O₃ (3-cycle)/La₂O₃ (10 nm)/InGaAs MOSFETs.

Fig. 5 Effective mobility of MOSFETs with the 3 gate stacks.