Low Temperature Cat-Doping of Phosphorous Atoms into Crystalline Silicon through Ultrathin SiO₂ Layer

Huynh Thi Cam Tu¹, Koichi Koyama¹, Shigeki Terashima¹, Hideki Matsumura¹

¹Japan Advanced Institute of Science and Technology (JAIST), Asahidai, Nomishi, Ishikawa 923-1292 E-mail: tu-huynh@jaist.ac.jp, camtu291985@gmail.com

Cat-doping is a novel doping method to dope phosphorous (P) or boron (B) atoms into crystalline silicon (c-Si) at temperatures as low as 80°C, by exposing the c-Si to species generated by catalytic cracking reaction of phosphine (PH₃) and diborane (B₂H₆) with heated tungsten (W) catalyzer¹. The method is expected to be used for improvement of solar cell efficiency through potential control of c-Si surface. However, some of c-Si surface may be covered with ultra-thin silicon dioxide (SiO₂) passivation layers, and also, the coat of c-Si surface by thin SiO₂ layers is more effective to avoid epitaxial growth of Si when a-Si layers are formed on c-Si to make hetero-junction. Thus, it is important to know the performance of Cat-doping through such thin SiO₂ layers.

Here, we attempted to cover the surface of the c-Si with ultra-thin SiO₂ layers. These SiO₂ layers were fabricated by thermally oxidized c-Si in dry oxygen (O₂) at temperature from 400 to 700 °C. Thickness of the SiO₂ layers as a function of oxidation temperature is shown in Figure 1. The ultrathin SiO₂ films with thickness varied in a range from 1.0 to 1.7 nm and good uniformity were obtained. Thickness of the SiO₂ can be controlled by varying oxidation temperature. Figure 2 shows relationship between the sheet carrier density and oxidation temperature of SiO₂ films after p-type c-Si samples are Cat-doped by P atoms at temperature of catalyzer (T_{cat}) of 1800 °C for 30 min through the SiO₂ layer. Sheet carrier density shown in this figure is for c-Si samples before and after removing the SiO₂ films was converted to n-type. Sheet carrier density likely increased when oxidation temperature of SiO₂ film and thickness decreased. For the c-Si covered with the SiO₂ film oxidized at 400 °C sheet carrier density was about 4.2×10^{-12} and 5.1×10^{-12} cm⁻² before and after removing the SiO₂, which are comparable with sample was not covered with SiO₂.

From these results we can conclude that Cat-doping can achieve even through the SiO_2 film, and thus, it is apparent for Cat-doping to be applied in various devices fabrication.

Figure 1: Thickness of the SiO_2 as a function of oxidation temperature.

Figure 2: Sheet carrier density of p-type c-Si samples P Cat-doped through SiO_2 as a function of oxidation temperature of the SiO_2

This work was supported by NEDO project.

[1] H. Matsumura et al., J. Appl. Phys., 116, 114502, 2014.