大気圧マイクロ熱プラズマジェットを用いた P+ドープ a-Ge 膜の結晶化 及び活性化

Crystallization and Activation of P+ dope a-Ge film by Atmospheric Pressure Micro-Thermal-Plasma-Jet 広大院先端研 °原田 大夢, 中谷 太一, 新 良太, 東 清一郎

Graduate School of Advanced Sciences of Matter, Hiroshima University
°H.Harada, T. Nakatani, R. Shin and S. Higashi
E-mail: semicon@hiroshima-u.ac.jp

序>我々は、石英基板上アモルファスゲルマニウム(a-Ge)膜への大気圧マイクロ熱プラズマジェット(μ -TPJ)照射により高速横方向結晶化(HSLC)を誘起し、チャネル領域に応用した P型 Ge-薄膜トランジスタ(TFT)の作製を報告した[1,2]。本研究では N型 Ge-TFT の作製に向け、リン(P^+)イオンをドープした a-Ge 膜に μ -TPJ を照射することで Pの活性化を試みた。

実験>石英基板上にプラズマ CVD 法により a-Ge 膜を $100\,\mathrm{nm}$ 堆積後、 $\mathrm{SiO_2}$ キャップ層を $50\,\mathrm{nm}$ 堆積し、 $\mathrm{P^+e^+ F^-}$ ズ量 $5\,\mathrm{x}$ $10^{15}\,\mathrm{cm^2}$ 、加速電圧 $100\,\mathrm{keV}$ にてイオン注入した。ドライエッチングにより幅 $2\,\mathrm{\mu m}$ 、間隔 $2\,\mathrm{\mu m}$ の格子状 a-Ge パターンを形成した。キャップ層除去後 $\mathrm{SiO_2}$ キャップ層を $550\,\mathrm{nm}$ 堆積、大気圧下において Ar ガス流量 $1.0\,\mathrm{L/min}$ 、投入電力 $0.9\sim1.1\,\mathrm{kW}$ 、噴出孔径 $600\,\mathrm{\mu m}$ より発生した $\mathrm{\mu}$ -TPJ 前面 $2.0\,\mathrm{mm}$ において基板を速度 $1800\,\mathrm{mm/s}$ で 掃引することで結晶化および活性化を同時に行い、HSLC-Ge 膜を形成した。ウェットエッチングによりコンタクトホールを形成後、蒸着により電極間距離 $1.2\,\mathrm{mm}$ の Al を堆積したもの、及び電力 $200\,\mathrm{w}$ 、Ar 流量 $30\,\mathrm{sccm}$ 基板加熱なしの条件の下、スパッタリングにより電極間距離 $0.5\,\mathrm{mm}$ の TiN を堆積したものを作製し、電流電圧(I-V)特性の調査及びホール効果測定を行った。

結果及び考察> μ -TPJ 照射後の光学顕微鏡写真から、P+をドープした a-Ge 膜においても形状を保持したまま HSLC が誘起したことを観察した(Fig.1)。 これらの HSLC-Ge 膜の I-V 特性を測定したところ、Al および TiN どちらの電極においてもオーミック特性を示した(Fig.2)。 このときのシート抵抗は Al で 42 ~ 58 Ω /sq. 、TiN で 48 ~ 58 Ω /sq. とほぼ同程度の低い値を示した。このとき、抵抗率が $5.0 \times 10^4 \Omega$ cm となることから、キャリア密度は少なくとも

 $7.0 \times 10^{19} \text{cm}^{-3}$ 以上と考えられ[3]、ドーパントが高効率に活性化しているものと考えられる。このため、高い活性化により AI でも良好なオーミック特性が得られたと考えられる。以上の結果より、 μ -TPJ により形成された HSLC-Ge 膜は P の高効率活性化に有効であるものと考えられる。

結論> P^+ ドープ a-Ge 膜への μ -TPJ 照射を行い、ホール効果測定を調査した。 μ -TPJ を用いて結晶化と活性化を同時に行うことにより、Ge での P^+ の高効率活性化を達成できることが分かる。

謝辞>本研究の一部は、広島大学ナノデバイス・バイオ融合科学研究所 の施設を用いて行われた。

[1]中谷他,第61回春期応用物理学会関係連合講演会 (2015),12a-A29-10. [2] T. Nakatani *et al.*, Proc. 36th Int. Symp. Dry Process (2015).41.

[3] S.M.Sze, Physics of semiconductor devices, 2nd ed, (1981) 33.

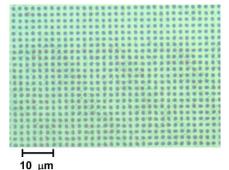


Fig. 1. Optical microscope photograph of P^+ implanted Ge pattern after $\mu\text{-TPJ}$ irradiation.

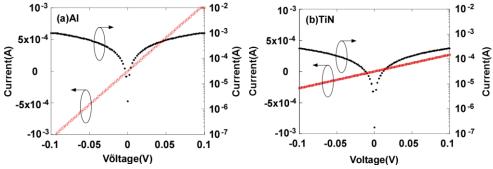


Fig.2. I-V curves of the HSLC-Ge by (a) Al and (b) TiN electrode.