Theoretical analysis of optical gain in Ge_{1-x}Sn_x/Ge quantum well on Ge-on-Si substrates [°]Guo-En Chang¹ (1. Nat. Chung Cheng Univ.) E-mail: imegec@ccu.edu.tw

 $Ge_{1-x}Sn_x$ alloys have emerged as a new active material for efficient Si-based lasers [1-3]. With a Sn composition of 6-10%, $Ge_{1-x}Sn_x$ alloys can become a direct bandgap material to enable efficient electron-hole recombination. Enhanced photoluminescence from GeSn has been recently observed [1], as well as first demonstration of GeSn lasers at low temperatures [2]. However, the high threshold of the GeSn laser hinders the device from practical applications. To reduce the threshold, research attention has been shifted to low-dimensional GeSn material systems for active materials due to modified density-of-states and better carrier confinements [3]. Here we present a theoretical investigation of optical gain of Ge_{1-x}Sn_x/Ge quantum wells pseudomorphically grown on Ge-on-Si substrates for Si-based lasers.

Fig. 1 (a) Calculated band structure for $\text{Ge}_{0.96}\text{Sn/Ge}_{0.04}$ QW on Ge-on-Si substrates with a thickness of 10/15 nm. (b) Calculated optical gain for $\text{Ge}_{1-x}\text{Sn}_x/\text{Ge}$ QW under a carrier density of $n = 1 \times 10^{19} \text{ cm}^{-3}$.

Figure 1(a) shows the band structure for pseudomorphic $Ge_{0.96}Sn_{0.04}/Ge$ QW on Ge-on-Si substrates calculated using the model described in Refs. [1, 3]. The results indicate a crucial type-I alignment in the $Ge_{0.96}Sn_{0.04}/Ge$ QW for efficient electron-hole recombination. Due to the compressive strain in the $Ge_{0.96}Sn_{0.04}$ well, the valence band is HH-like, resulting in dominant Γ 1-HH1 direct transition and large transverse-electric (TE) optical gain. Figure 1(b) shows the calculated optical gain for $Ge_{1-x}Sn_x/Ge$ QW. As the Sn composition increases, high optical gain becomes achievable because of the reduced energy separation between the lowest L- and Γ -confined states. These results indicate that $Ge_{1-x}Sn_x/Ge$ QW is promising for Si-based lasers that can operate at room temperature with a low threshold.

References

- 1. G. E. Chang *et al.*, Opt. Lett. **38**(18),3485–3487 (2013).
- 2. S. Wirths et al., Nat. Photon. 9, 88–92 (2015).
- 3. G. E. Chang *et al.*, IEEE J. Quantum Electron. **46**(12), 1813-1819 (2010).