Spectral correlation measurement in Hong-Ou-Mandel interference between two independent sources
NICT\textsuperscript{1}, NIST\textsuperscript{2}, Waseda University\textsuperscript{3}, UEC\textsuperscript{4},
\textdegree{} Rui-Bo Jin\textsuperscript{1}, Thomas Gerrits\textsuperscript{2}, Mikio Fujiwara\textsuperscript{1}, Ryota Wakabayashi\textsuperscript{1,3}, Taro Yamashita\textsuperscript{1}, Shige hito Miki\textsuperscript{1}, Hirotaka Terai\textsuperscript{1}, Ryosuke Shimizu\textsuperscript{4}, Masahiro Takeoka\textsuperscript{1}, Masahide Sasaki\textsuperscript{1}

E-mail: ruibo@nict.go.jp

Hong-Ou-Mandel (HOM) interference between independent photon sources (HOMI-IPS) is the fundamental block for quantum information processing. All the previous HOMI-IPS experiments were carried out in time-domain, however, the spectral information during the interference was omitted. Here, we investigate the HOMI-IPS in spectral domain using the recently developed fast fiber spectrometer, and demonstrate the spectral distribution during the HOM interference between two heralded single-photon sources, and two thermal sources. This experiment not only can deepen our understanding of HOMI-IPS from the viewpoint of spectral domain, but also presents a tool to test the theoretical predictions of HOMI-IPS using spectrally engineered sources. Figure 1 shows the experimental setup and Fig.2 shows the experimentally measured joint spectral distribution at different delay positions [1-3].

Fig. 1: The experimental setup  
Fig. 2: The experimental results

Reference:

