音響キャビテーションを伴う瞬時音場のシャドウグラフ計測

Shadowgraph Measurement of Instantaneous Ultrasound Field

with Acoustic Cavitation

O^(D)黒山 喬允¹, 水谷 孝一², 若槻 尚斗², 海老原 格², 大淵 武史³, (1. 筑波大・シス情工, 2. 筑波大・シス情系, 3. 防衛大・応物)

^{o(D)}Takanobu Kuroyama¹, Koichi Mizutani², Naoto Wakatsuki², Tadashi Ebihara², Takeshi

Ohbuchi³, (1. Univ. of Tsukuba, 2. National defense academy)

E-mail: mizutani@iit.tsukuba.ac.jp

1. はじめに

水中に入射した強力な超音波によって生じ 振動する気泡である音響キャビテーションは, 収縮・崩壊時に個々の気泡から液中に衝撃波が 放射される事が知られている.¹⁾しかし,多数 の気泡からの衝撃波の重畳によって形成され る瞬時音場の報告は少ない.本報告では水中に ホーン型振動子によって形成される音響キャ ビテーションを伴う音場をシャドウグラフ法 ²⁾によって可視化する.

2. 音場の計測結果

Fig. 1 にシャドウグラフ法による音場の計測 結果を示す.光源には持続時間 30 ns, 波長 640 nm の半導体レーザを用いた.なお,示した光 強度は背景光の影響を除去するために次式で 得られる正規化した光強度の差 ΔI とした.

$$\Delta I = (I - I_{\rm h}) / I_{\rm h}. \tag{1}$$

ここで, *I* は計測した光強度, *I*_b は背景光強度 である. 超音波は断面が 30 ×30 mm²の水槽に 高さ 55 mm まで満たした水の表面に接触させ た直径 30 mm の円形出力面を持つホーン型振 動子によって入射した. 振動子は周波数 19.6 kHz の正弦波交流電圧で駆動した.

Fig. 1(a) – (c)からいずれの振動子駆動電力に おいても、1 mm 程度の空間周期を持つ斑点状 の音場が形成さている事がわかる.これは、ラ ンダムに位置する多数の音響キャビテーショ ンから放射された衝撃波の干渉によって生じ たものであると考えられる.また、斑点のコン トラストは駆動電力の増加に伴って高くなる.

Fig. 1 (c) – (d) は駆動電力 30 W, 振動子駆動 電圧の位相 $\phi = 0$, $\pi/2$, π , $3\pi/4$ (rad)における計 測結果である. いずれの位相においても, ホー ン表面から離れた領域の音場は斑点状である. このように, 斑点状の音場は入射する超音波の 位相とは無関係に形成される. $\phi = 0$, $\pi/2$, $3\pi/4$ (rad) においてはホーン軸上のホーン表面付近 に光強度の低下がみられるが, これは多数の音 響キャビテーションによって入射光が遮られ たためである. $\phi = \pi$ rad においてはこの光強度 低下は見られないが, これは音響キャビテーシ ョンが収縮し崩壊したためである.一方で、こ の位相では気泡の崩壊によって生じたと考え られる衝撃波がホーン軸付近に見られる.

3. まとめ

シャドウグラフ法による計測によって,音響 キャビテーションを伴う音場は,気泡から放出 された衝撃波の重畳によってランダムな斑点 状の音圧分布を持つことがわかった.

Fig. 1 Shadowgraph images of acoustic field under horn. Input powers to horn transducer were (a) 8 W, (b) 15 W, (c)-(f) 30 W. The images were captured at phases of driving voltage ϕ were (a)-(c) 0, (d) $\pi/2$, (e) π , (f) $3\pi/4$ (rad). 参考文献

- 1) W. Lauterborn *et al.*, Ultrason. Sonochem. **14** (2007) 484.
- 2) K. R. Weninger et al., Phys. Rev. E 63 (2000) 016310.