ナノアモルファス層状窒化炭素の光学的性質における非晶質性

Effects of structural disorder on optical properties of nano amorphous graphitic carbon

nitrides

筑波大数物¹、岡山理大² ⁰山本 淳司¹、平井 正明²、安井 望²、財部 健一²、松石 清人¹

Institute of Materials Science, University of Tsukuba¹, Okayama University of Science²

^OAtsushi Yamamoto¹, Masaaki Hirai², Nozomu Yasui², Kenichi Takarabe², Kiyoto Matsuishi¹

E-mail: yamamoto@bunko2.bk.tsukuba.ac.jp

graphitic-C₃N₄ (g-C₃N₄)は光触媒作用を示し、またドーピングにより電子状態の制御が可能であることから、触媒 や光学素子への応用が期待されている。2007 年に岡山理科大学の財部らは大気圧窒素プラズマ法を用いたナノア モルファス層状窒化炭素 na-g-C₃N₄H_xO_yの合成に成功した[1]。彼らが作製した na-g-C₃N₄H_xO_yは heptazine(C₆N₇)構 造を基本骨格とする乱層構造を持つことがすでに分かっている。本研究では na-g-C₃N₄H_xO_yについて、光吸収測定、 発光(Photoluminescence, PL)測定、および発光の励起スペクトル測定を行い、その光学的性質を調べた。また、炭 素原子に対する窒素原子の組成比(N/C 比)とアニーリングが光学的性質に及ぼす影響についても調べた。

大気圧窒素プラズマ法を用いて作製された N/C 比が異なる 2 つの As-grown 試料、およびそれらをアニーリング した 3 つの Annealed 試料、合計 5 つの試料(Table1)について、光吸収測定と発光測定を行った。光吸収測定の結果 より、Fig.1 のように Tauc プロットを行い、その直線部分と吸収係数α=0 の交点(青矢印)からアモルファス半導体 のエネルギーギャップに相当する光学ギャップ(Optical gap)を決定した。N/C 比が異なる As-grown 試料(ID1 と ID2) を比較したところ、N/C 比が低いほど、光学ギャップが小さくなった。また、As-grown 試料と Annealed 試料を比 較したところ、アニーリングにより光学ギャップが小さくなった。一般的に固体物質の基本的電子物性を決定し ているのは、主として構成原子の短距離秩序であることから、アニーリングにより短距離秩序に変化が生じてい ることが考えられる。また、光学ギャップを反映して、PL スペクトルのピーク位置も各試料で異なることを確認 した。当日は、Urbach 領域の解析から得られた系の乱れに関する知見、発光の励起スペクトル測定で確認したサ イト選択励起発光、および発光スペクトルの光照射依存性(酸素の効果)から、このナノアモルファス層状窒化

炭素の局在電子状態の分布について議論する。現在、na-g-C₃N₄H_xO_yの高温高圧処理により結晶性を高めた試料の作製を進めており、試料の非晶質性が関係する光学的性質について、議論をより深めていきたいと考えている。

Sample	Preparation condition (Annealing conditions)	Composition	CN_{θ} θ (= N/C)	Optical gap (eV)	PL peak position (eV)
ID1	As-grown	$C_3N_4H_xO_y$	1.33	2.58	2.79
ID3	Annealed ID1 (Vacuum, 300°C, 30 min)	C3N4-zHxOy	< 1.33	2.04	2.64
ID5	Annealed ID1 (N ₂ , 400°C, 1 h)	_	_	2.13	2.62
ID2	As-grown	$C_2 NH_x O_y$	0.5	2.00	2.73
ID4	Annealed ID2 (Vacuum, 300°C, 30 min)	$C_3N_2H_xO_y$	0.67	1.72	2.59

[1] H. Tabuchi et al., Jpn. J. Appl. Phys. 46, 1596 (2007).

Fig. 1 Photoluminescence spectra and Tauc plots of nano amorphous graphitic carbon nitrides. The blue arrows indicate the optical gaps.