High-Order Harmonics from Relativistic Electron Spikes: Statistical Analysis

JAERI, Osaka Univ. 2, P. N. Lebedev Physical Institute 3, Rutherford Appleton Laboratory 4, The Graduate School for the Creation of New Photonics Industries 5

A. S. Pirozhkov 1, T. Zh. Esirkepov 1, T. A. Pikuz 2, A. Ya. Faenov 2, K. Ogura 1, Y. Hayashi 1, H. Kotaki 1, E. N. Ragozin 3, D. Neely 4, H. Kiriyama 1, J. K. Koga 1, Y. Fukuda 1, A. Sagisaka 1, M. Nishikino 1, T. Imazono 1, N. Hasegawa 1, T. Kawachi 1, H. Daido 1, Y. Kato 5, S. V. Bulanov 1, K. Kondo 1, and M. Kando 1

E-mail: pirozhkov.alexander@jaea.go.jp

High-order harmonics from relativistic electron spikes [1, 2] are generated by multi-terawatt femtosecond lasers focused onto gas jet targets up to irradiances exceeding 10^{18} W/cm2. Possible applications of these harmonics range from plasma diagnostics to compact bright attosecond x-ray sources. These applications require stability and well understood generation processes. Here we present statistical analysis of the harmonic generation employing a dataset from a large number of shots with the J-KAREN laser [3] with the emphasis on the reproducibility, stability, and spectral shape properties. The latter include analysis of base harmonic frequencies with a typical separation of ~ eV and relatively slow spectral modulations with a period up to a few tens of eV, which may give a hint to the temporal structure of the XUV radiation.

We acknowledge financial support from MEXT, Japan (Kakenhi #25287103, 25390135, and 26707031).

