High-Order Harmonics from Relativistic Electron Spikes: Statistical Analysis JAEA ¹, Osaka Univ. ², P. N. Lebedev Physical Institute ³, Rutherford Appleton Laboratory ⁴, The Graduate School for the Creation of New Photonics Industries ⁵ A. S. Pirozhkov ¹, T. Zh. Esirkepov ¹, T. A. Pikuz ², A. Ya. Faenov ², K. Ogura ¹, Y. Hayashi ¹, H. Kotaki ¹, E. N. Ragozin ³, D. Neely ⁴, H. Kiriyama ¹, J. K. Koga ¹, Y. Fukuda ¹, A. Sagisaka ¹, M. Nishikino ¹, T. Imazono ¹, N. Hasegawa ¹, T. Kawachi ¹, H. Daido ¹, Y. Kato ⁵, S. V. Bulanov ¹, K. Kondo ¹, and M. Kando ¹ E-mail: pirozhkov.alexander@jaea.go.jp High-order harmonics from relativistic electron spikes [1, 2] are generated by multi-terawatt femtosecond lasers focused onto gas jet targets up to irradiances exceeding 10^{18} W/cm². Possible applications of these harmonics range from plasma diagnostics to compact bright attosecond x-ray sources. These applications require stability and well understood generation processes. Here we present statistical analysis of the harmonic generation employing a dataset from a large number of shots with the J-KAREN laser [3] with the emphasis on the reproducibility, stability, and spectral shape properties. The latter include analysis of base harmonic frequencies with a typical separation of ~ eV and relatively slow spectral modulations with a period up to a few tens of eV, which may give a hint to the temporal structure of the XUV radiation. We acknowledge financial support from MEXT, Japan (Kakenhi #25287103, 25390135, and 26707031). - 1. A. S. Pirozhkov, *et al.*, "Soft-X-Ray Harmonic Comb from Relativistic Electron Spikes," *Phys. Rev. Lett.* **108** (13), 135004-5 (2012). - 2. A. S. Pirozhkov, *et al.*, "High order harmonics from relativistic electron spikes," *New J. Phys.* **16** (9), 093003-30 (2014). - 3. H. Kiriyama, *et al.*, "High-Contrast, High-Intensity Petawatt-Class Laser and Applications," *IEEE J. Sel. Topics Quantum Electron.* **21** (1), 1601118-18 (2015).