Fabrication of L10-Mn1-xCoxAl Thin Films for Magnetic Tunnel Junctions [°]Kenta Watanabe^{*}, Mikihiko Oogane, Miho Kubota, Yasuo Ando (Tohoku University) ^{*}E-mail: kenta.w@mlab.apph.tohoku.ac.jp

Magnetic tunnel junctions (MTJs) show a tunnel magneto-resistance effect (TMR) and are applied widely for spintronic devices such as magnetic random access memory (MRAM), HDD read heads and magnetic sensors etc. MRAM using spin transfer torque effect (STT-MRAM) attracts much attention because it can decrease power consumption in comparison with conventional MRAM. Magnetic materials using the ferromagnetic layer in STT-MRAM are required a high magneto-crystalline anisotropy $(K_{\rm u})$, a low gilbert damping constant (α) and a low saturation magnetization (M_s). We focus L1₀-MnAl alloy with a high K_u (1.5×10⁷ erg/cc), a low α (0.006) and a small M_s (550 emu/cc) ^[1]. According to previous reports, (Mn-Co)-Al alloys with a few % Co atoms were easily crystalized to L10 structure in comparison with Mn-Al binary alloys ^[2]. In this study, we have investigated the structural and magnetic properties in $Mn_{1-x}Co_xAl$ thin films with various Co content (x) to apply them to ferromagnetic electrodes of MTJs.

All thin films were prepared by UHV-DC/RF magnetron sputtering system. The film structure was MgO (100) sub. / CrRu (40 nm) / $Mn_{1-x}Co_xAl$ (t nm) / Ta (5 nm). $Mn_{1-x}Co_xAl$ layer thickness was varied from 5 to 50 nm. Substrate temperature (T_s) during deposition and post annealing temperature (T_a) after deposition of Mn_{1-x}Co_xAl layer were varied as $T_s = 200 \sim 400^{\circ}$ C and $T_a = 300 \sim 500^{\circ}$ C to investigate the temperature dependences of structural and magnetic properties. We measured structural and magnetic properties by XRD and SQUID.

From the XRD measurements, we found that $Mn_{1-x}Co_xAl$ films (50 nm) with x = 0.05 annealed below T_a = 350° C had L_{10} -ordered structure. On the other hand, the films annealed above $T_{a} = 400^{\circ}$ C showed a disordered crystal structure. Fig. 1 shows the post annealing temperature dependences of saturation magnetization (M_s) and M_r/M_s ratio in Mn_{1-x}Co_xAl (50 nm) thin films with x = 0.05. Both high M_s and M_r/M_s ratio were observed at $T_a = 350^{\circ}$ C and both M_s and M_r/M_s ratio decreased with increasing T_a due to

the disordering of $L1_0$ structure. We will also present substrate temperature and Co content dependences of structural and magnetic properties in Mn_{1-x}Co_xAl thin films. This work was supported by Research and Development Project for ICT key technology to realize future societies by MEXT and grand-in-aid for scientific research S (No.24226001).

- Reference: [1] M. Hosoda, M. Oogane, M. Kubota et al., Fig. 1 M_s and M_r / M_s ratio as function of post J. Appl. Phys., 111, 07A324 (2012)
- [2] Y. Kurimoto, Tohoku Univ. Master Thesis (2015)

