膜厚の異なる電子ビーム蒸着 MgB2 薄膜の臨界電流特性

Thickness dependence of critical current properties in electron-beam deposited

MgB₂ films

京大院エネ科¹, 日立製作所², 電力中央研究所³:

^O下田 佑太郎¹, 竹原 寛人¹, 堀井 滋¹, 土井 俊哉¹, 楠 敏明², 一瀬 中³

Kyoto Univ.¹, Hitachi Ltd.², CRIEPI³

^oY. Shimoda¹, H. Takehara¹, S. Horii¹, T. Doi¹, T. Kusunoki², A. Ichinose³

E-mail: shimoda.yutaro.66e@st.kyoto-u.ac.jp

1. はじめに

 MgB_2 は、金属系超伝導体中で最高の臨界温度 ($T_c=39$ K)を有する。 MgB_2 には、組成制御が比較的 容易であること、構成元素の $Mg \ge B$ がいずれも資源的 に豊富であること、軽いこと(低比重)等の利点があり、 液体水素や冷凍機を利用した 20 K 近傍での実用化が 期待されている。

我々は電子ビーム(EB)蒸着法でAlテープ上に作製 した MgB₂ 薄膜が、4.2 K、10 T において $J_c > 1$ MA/cm² を示すことを報告した[1]。この高い J_c は超高 真空中・低温での薄膜作製により MgO 相の少ない結晶 粒界や柱状組織(粒界ピン)をもつ c 軸配向 MgB₂ 薄膜 が得られたことによる。しかし、応用が期待される 20 K で の磁場中 J_c がまだ十分ではない。そこで、本研究では MgB₂薄膜の膜厚を変化させ、膜厚が MgB₂薄膜の T_c 、 J_c に与える影響を明らかにした。

2. 実験方法

 MgB_2 薄膜の作製を EB 蒸着法により行った。Mg および B にそれぞれ電子ビームを照射し、280°C に加熱した Si 単結晶基板上に蒸着した。原料には Mg 鋳造塊と結晶性 B を用いた。膜厚は蒸着時間で制御し、目標膜厚を 50、100 nm とした 2 種類の MgB_2 薄膜に加えて従来の 200 nm の MgB_2 薄膜を作製したところ、それぞれ 58、140、204 nm の厚さの MgB_2 薄膜を得た。ここで、これらをそれぞれ Si-A、Si-B、Si-C とする。また、全ての試料について、超高真空中(< 1×10⁻⁷ Pa)のアニール(温度:550°C,時間:12 h~100 h)を行った。

Si-A~Si-C の as-grown 試料およびアニール試料に ついて X 線回折(XRD)測定法により生成相の同定を行 い、化学組成を誘導結合プラズマ(ICP)発光分光分析 から決定した。なおこれらの MgB_2 薄膜の組成は Mg:B=1: 2.2~2.7 であった。また、 T_c 、 J_c については四 端子法から決定した。

3. 結果と考察

XRD 測定からいずれの試料においても(001)、(002) ピークのみが観測されたことから、膜厚が変化しても基 本的には MgB₂ が c 軸配向していることがわかった。ま た、Table 1 に示すように、Si-A~Si-C の as-grown 試料 での T_c は Table 1 に示すように、それぞれ 28.2 K、33.2 K、33.4 K であり、膜厚とともに T_c は上昇した。また、20 K での J_c (Fig.1)も膜厚とともに上昇する傾向を示した。 ところで、TEM 断面観察の結果を考慮すると、膜厚に 依存した *T*_c、*J*_c は、基板界面(成長初期)に存在する結 晶性の低い MgB₂ 相の割合(約 80 nm 厚)が相対的に 変化することによるものと考えられる。

Table 1 の 12~100 h の超高真空中アニールの T_c に 着目すると、アニール時間の増加とともに T_c は上昇した。 また T_c の改善により J_c (Fig.1)も向上した。さらに、Si-A、 Si-B は Si-C よりも高い耐磁場性を示し、特に Si-B は 5 T 以上の高磁場中で Si-C を超える J_c を有し、20 K、5 T で $J_c \sim 0.6$ MA/cm³ であった。

当日は、as-grown 試料およびアニール試料の TEM 観察結果と合わせて、EB 蒸着 MgB₂ 薄膜の臨界電流 特性の膜厚依存性について議論する。

Table 1 T_c s of the as-grown and annealed MgB₂ thin films

Sample	thickness [nm]	<i>T</i> _c [K]			
		as- grown	12h- annealed	50h- annealed	100h- annealed
Si-A	58	28.2	32.2	32	32.4
Si-B	140	33.2	34	34.5	35.1
Si-C	204	33.4	34.8	36.1	36.1

Fig.1 $\mu_0 H$ dependence of J_c at 20 K for MgB₂ thin films grown on Si at 280°C

参考文献

[1]吉原ら,低温工学 47,103 (2012).

[2]竹原ら, H27 春応用物理学会 (13p-A1-7)