h-BN/2 層グラフェン/h-BN ゲートスタック構造での I_{on}/I_{off} 向上 Improvement of I_{on}/I_{off} for bilayer graphene by encapsulation with *h*-BN 東大¹, NIMS², JST-さきがけ³, ○ウワンノー ティーラユット¹, 谷口尚², 渡邊賢司², 長汐晃輔^{1,3} Tokyo Univ.¹, NIMS², PRESTO-JST³ ○T. Uwanno¹, T. Taniguchi², K. Watanabe² and, K. Nagashio^{1,3}

E-mail: uwanno@ncd.t.u-tokyo.ac.jp

1. 緒言 2層グラフェン(BLG)のFET応用の観点から,high-k/BLG/SiO₂ゲートスタック構造において Ion/Ioff向上を目指した研究が精力的に行われてきた.しかしながら,コンダクタンス法によるギャップ 内準位解析から10¹³ cm⁻²eV⁻¹もの準位が存在し,さらなるIon/Ioff向上にはデバイス応用においてもh-BN/BLG/h-BNゲートスタック構造の必要性を指摘してきた[1].すでにh-BNとBLGを複層化したデバイ スの報告は数多くあるが,極低温,強磁場下での高移動度・低キャリア数(~10¹¹cm⁻²)領域での量子輸送 特性を議論したものが殆どであり,デバイス特性の観点からIon/Ioffを議論した報告は殆ど無い.本研究 では,h-BN/BLG/h-BNデュアルゲートFETのIon/Ioffを評価し,0.3eVのギャップ形成に必要な外部電界の 観点からh-BNの特徴を議論する.

2. *h*-BN/BLG 界面でのバブル形成 PMMA/PDMS/スライドガラス上に*h*-BN を機械的剥離法で転写し, この*h*-BN により n⁺-Si/SiO₂(90 nm)上の BLG をピックアップした.続けて,*h*-BN/BLG を加熱・冷却機 構を用いた乾式転写手法[2]により別途用意した n⁺-Si/SiO₂(90 nm)基板上 *h*-BN に対して貼り合わせ,*h*-BN/BLG/*h*-BN ゲートスタックを形成した.大気中での複層化の場合,CH 系の不純物が界面に取り込 まれるバブル形成が知られており,図 1(a, b)に示すように画像処理を施すことで光顕写真においても 黒丸として認識できる.Ar/H₂ 中 300℃,3 時間のアニール後においても凝集せず,清浄界面領域の拡 大は殆ど認められない(図 1(c)).この挙動は自由表面を有する G/*h*-BN 構造と異なり,上側に存在する 数 10nm の *h*-BN によりバブルの移動が妨げられたと考えられる.経験的には,図 1(b)に示すように, 細長い形状のグラフェンを選択して転写することで,バブルの形成を低減することが可能である.

3. 輸送特性及び lon/loff 評価 h-BN/BLG/h-BN 構造において BLG は h-BN に覆われているため、h-BN との化学反応性の強い CF₄ プラズマにより h-BN を選択的エッチングし、EB リソにより Ni/Au 電極を 形成した(図 2 挿入図). チャネル内にバブルを避けることが望ましいが、厳密な制御は困難なためいく つかのバブルを含む形でチャネル領域を定義した. 図 2 に 20K における電子輸送特性を示す. V_{BG} 印 加によりギャップが形成し、Dirac point の電気伝導度低下が顕著になる. 図 3 に I_{on}/I_{off} と Displacement の絶対値[D]の関係を示す. 同じ[D], つまり同じバンド構造において h-BN/BLG/h-BN の I_{on}/I_{off} は, highk Y₂O₃/BLG/SiO₂ より高いことから、I_{on}/I_{off} の向上が確認できる. ここで、TG と BG で同じ絶縁体を用 いた場合、[D] = $\epsilon V/d$ と簡単化できる. 同一膜厚, 同一電圧下では high-k の方が高い[D]が得られ、0.3eV のギャップ形成に必要な[D]=3V/nm は現時点で high-k のみで達成されており、図中点線で示すように h-BN では 1.2V/nm 程度に留まる[3, 4]. h-BN は、絶縁破壊電界は高いが誘電率が 4 と小さいため、最 大ギャップでの I_{on}/I_{off} の向上には、トップゲートにおいて h-BN と high-k との複層化が必要となる.

謝辞 本研究の一部は科研費により助成を受けて行われました.ここに深く感謝致します.

[1] K. Kanayama et al. Sci. Rep. 5, (2015) 15789. [2] T. Uwanno, et al. 2D Materials 2, (2015) 041002. [3] A. Varlet, et al., PRL, 113, (2014) 116602. [4] A. F. Young, et al., PR-B, 85, (2012) 235458.

図 1(a), (b) *h*-BN/BLG/*h*-BN の光顕写真. 図 2 電気伝導度とゲート電圧. BN_T, BN_Bは, それぞれ上側と下側の *h*- (挿入図)複層化デバイスの光顕写真. BN である. (c) 写真(a)におけるアニール

前後のバブル高さと半径の関係.