Minority-carrier lifetime of BaSi₂ formed on various multicrystalline Si substrates

^oY. Li¹, Cham Thi Trinh², R. Takabe¹, K. Toko¹, T. Sekiguchi³, N. Usami²

, T.Suemasu¹

(¹Univ. Tsukuba, ²Nagoya Univ., ³NIMS)

E-mail: bk201113023@s.bk.tsukuba.ac.jp

Introduction We have been focusing on BaSi₂ as a new candidate material for thin-film solar cell because not only a large absorption coefficient (α =3×10⁴ cm⁻¹@1.5 eV) but also a large minority-carrier lifetime (~10 µs) can be utilized in BaSi₂ epitaxial layers formed on a Si (111) substrate[1,2]. However, to realize the mass production of BaSi₂, inexpensive substrates such as multicrystalline Si (mc-Si) and glass are needed for BaSi₂ fabrication. Recently, we have formed BaSi₂ on mc-Si substrates. It is thus of significant importance to investigate the properties of non-epitaxial BaSi₂ films formed on those substrates. In this study, we fabricated BaSi₂ films on various mc-Si substrates with different grain size and grain orientations, and measured their minority-carrier properties by microwave-detected photoconductivity decay (µ-PCD) method.

Experiment We adopted two kinds of mc-Si substrates. The grains of substrate A are small and randomly oriented. On the other hand, substrate B has (111) highly oriented grains and larger grain size than substrate A. Over 500 nm undoped n-BaSi₂ layers capped with 8 nm α -Si were grown on those substrates by MBE method. The crystal orientation of BaSi₂ was investigated by X-ray diffraction (XRD). The minority-carrier lifetime was measured by μ -PCD method. Electron-hole pairs were generated by a 5 ns laser pulse with a wavelength of 349 nm and photoconductivity decay was measured by the reflectivity of microwave with the frequency of 26 GHz. The photon flux density was 1.1×10^{15} cm⁻² s⁻¹.

Results & Discussions The effective lifetime (τ_{eff}) vs reflected microwave intensity (*I*) curves can be divided into three parts. According to our previous research, τ_{eff} of SRH recombination part can represent the lifetime of BaSi₂ layers [3]. Figure 1 shows the τ_{eff} of BaSi₂ grown on substrate A. We can see that sample1 grown at 580 °C had larger τ_{eff} than those of samples grown at holder temperatures of 550 & 600 °C, meaning that 580 °C might be an appropriate temperature for BaSi₂ on substrate A. On the other hand, Fig. 2 shows the results of BaSi₂ grown on substrate B. In this case, sample 4 grown at 580 °C shows the roughest surface, which may attribute to the smallest τ_{eff} of 0.6 µs, possibly because that 580 °C was not sufficiently high for substrate B. Samples 5&6 were grown at 650 °C at the same time. Sample 6 had higher τ_{eff} than sample 5, which is probably due to the fact that the existence of epitaxial BaSi₂ part can attribute to higher τ_{eff} in sample 6. Comparing with τ_{eff} of epitaxial BaSi₂ grown on Si (111) substrates, those of BaSi₂ grown on mc-Si substrates show smaller τ_{eff} around 1 µs. This can be attributed to the crystal quality and surface roughness of BaSi₂ grown on mc-Si substrates.

References

[1] K. Toh, *et al.*, Jpn. J. Appl. Phys. **50** (2011) 068001. [2] R. Takabe, *et al.*, J .Appl. Phys. **115** (2014) 193510. [3] K. O. Hara *et al.*, J. Appl. Phys. **112** (2012) 083108.

Fig 1 τ_{eff} as a function of the reflected microwave intensity (*I*) for samples 1-3 grown on substrate A. The photo density is $1.1 \times 10^{15} \text{ cm}^{-2}$.

Fig 2 τ_{eff} as a function of the reflected microwave intensity (*I*) for samples 4-6 grown on substrate B. The photo density is $1.1 \times 10^{15} \text{cm}^{-2}$.