Vortex Spin-Torque Oscillator using Co₂(Fe,Mn)Si Heusler Alloys

with various Fe-Mn Compositions

Tatsuya Yamamoto¹, Takeshi Seki^{1,2}, and Koki Takanashi¹ 1. *IMR, Tohoku Univ.*, 2. *JST-PRESTO*

Introduction A spin torque oscillator (STO) is a nanoscale oscillator consisting of a FM/NM/FM (FM: ferromagnetic metal, NM: nonmagnetic metal or insulator) junction. Since the output power (P_{out}) of a STO is determined by the magnetoresistance ratio of the junction, FMs exhibiting high spin polarization are strongly desired to develop high P_{out} STOs. Previously, our group achieved high P_{out} exceeding 1 nW by using Co₂(Fe,Mn)Si (CFMS) Heusler alloys [1-3]. Also, in the recent work, we developed CFMS-based vortex STO exhibiting high P_{out} of 10.3 nW with an extremely high quality factor (Q) of 4000 [4]. Although these studies demonstrated the advantage of the use of CFMS alloys for achieving high P_{out} , systematic investigations on the relationships among the magnetic properties of CFMS films, the oscillation properties, *e.g.*, P_{out} , and the threshold current (I_{th}) are still missing. In this study, we fabricated CFMS-based vortex STOs with various Fe-Mn compositions, and investigated the influences of the magnetic properties on the spin torque oscillations.

Experiment CFMS (20)/Ag (5)/CFMS (30) (in nanometer) films were prepared on Cr/Ag-buffered MgO (001) substrates by using an ultrahigh-vacuum-compatible magnetron sputtering system with a base pressure $P_{\text{base}} < 1 \times 10^{-7}$ Pa. The Fe-Mn composition of the CFMS films were controlled by co-sputtering a Co₂FeSi and a Co₂MnSi alloy targets. The CFMS films were deposited at room temperature, and were annealed at 500 °C to promote the $L2_1$ ordering. The structural analysis and the magnetization measurement were carried out by using X-ray diffraction and a vibrating sample magnetometer, respectively. The 30-nm-thick CFMS layer was formed into a 240-nm-diameter circular shape by employing electron-beam lithography and Ar-ion etching to stabilize a magnetic vortex. In order to excite the magnetization dynamics, dc current was fed into the device using a source meter, and the rf signal from the device was detected by using a spectrum analyzer.

All the CFMS films showed high $L2_1$ ordering (> 60%) regardless of the Fe-Mn compositions whereas both the saturation magnetization (M_s) and the coercivity (H_c) of the CFMS films monotonically increased with increasing the Fe concentration. P_{out} of the device was increased by the Fe substitution and the maximum P_{out} of 15. 9 nW was obtained for Co₂Fe_{0.4}Mn_{0.6}Si. Also, similar to the dependences of M_s and H_c on the Fe-Mn composition, almost linear increase of I_{th} was observed except around Co₂Fe_{0.4}Mn_{0.6}Si where a remarkable reduction of I_{th} was observed. This result suggests that I_{th} of a vortex STO is determined not only by M_s , H_c and the spin polarization of FM electrodes but also by the Gilbert damping constant regardless of the strongly non-uniform magnetization configuration of a magnetic vortex. These knowledges would be profitable for the development of high P_{out} and highly efficient vortex STOs.

References

[1] R. Okura *et al.*, *APL* **99**, 052510 (2011).
[2] T. Seki *et al.*, *APL* **105**, 092406 (2014).
[3] T. Yamamoto *et al.*, *APL* **106**, 092406 (2015).
[4] T. Yamamoto *et al.*, The 77th JSAP Autumn Meeting, 2015.