CNT を用いた微生物燃料電池の試作 続(2)

Prototype of microbial fuel cell using the CNT (2)

O(M2) 倉嶋 一塁 1, 高橋 克己 1, 小原 宏之 1 (1. 玉川大学 TSCP)

°(M2) Kazuki Kurashima¹, Katsumi Takahashi¹, Hiroyuki Obara¹ (1. Tamagawa Univ. TSCP)

E-mail: hiroyuki@eng.tamagawa.ac.jp

TSCP (Tamagawa Solar Challenge Project) ではハイブリッド・ソーラーカーの開発 を行っている. 持続可能な循環型社会へ向けて 「カーボン・ニュートラル」と言われているバイ オマスからのエネルギー調達を目標としている (1). 微生物が有機物を嫌気的に酸化する際のエネ ルギーを電気に変換回収することから土壌改質 や、新エネルギーとして期待されている微生物燃 料電池(MFC)に注目し,MFC 発電特性の向上を 目指し実験・改善を行ってきた. また,発電量が少 ないことがデメリットとして挙げられ,研究が盛 んに行われており,酸化鉄をコロイド状にするこ とにより発電量が増加したという報告もある.本 稿では CNT(Carbon Nano Tube),塩化鉄,腐食液を 用いて3種類の酸化鉄コロイドを作成し,MFCの 長期間の発電能力,発電特性を測定し,MFC の可 能性について探る.

目的 MFC のアノード電極に,3種類の酸化鉄コロイドを塗布した場合の長期発電特性を比較・評価する.

実験 Fig. 1 の原理を基にして作成した MFC に、 CFRP と CarbonMat を組み合わせ、CNT を塗布したものを電極に用いた. カソード電極は 1 層、アノード電極は 3 層の電極を用いた.

共通条件

- ・土壌 (学内の田んぼより採取)・チタン電線
- ・リンゴ酢・プロトン交換膜 電圧・電流特性を測定し、発電量を比較する.

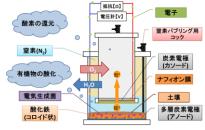


Fig.1 微生物燃料電池の原理

蒸留水に塩化鉄を入れ 100°Cまで加熱し、水酸化ナトリウムを添加し中性(pH7)にする。その後蒸留水で洗浄、ろ過を行い、表 1に示した内訳で3タイプの酸化鉄を作成した。

表1 酸化鉄コロイド成分

24 - 841224 117950					
		蒸留水【ml】	塩化鉄(Ⅲ)【g】	腐食液【ml】	CNT 水溶液【g】
	Type1	60		20	
	Type2	60	3.59		20
	Type3	60	3.02		

測定結果 稼働後 1 ヶ月くらいは特性に大きな変化がなく,アノード側を嫌気状態にしたところ,出力に増加の変化がみられた.

また約2ヶ月が経過した時点で,出力特性に変化がなくなった為,エサとなるリンゴ酢の投与を行ったところ出力の向上がみられた. (Fig.2)

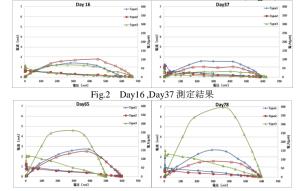


Fig.3 Day65,Day78 測定結果

比較 粉状酸化鉄をアノード電極の上に散布し、 CFRP+CNT 電極を用いた MFC と今回のコロイド Type2 と CFRP +CNT 多層電極を用いた MFC の I-V、V-W 特性を比較した.

- ・電力値は約4倍,電流値は約2倍
- ・電圧値も 0.6【V】を安定して出力している.

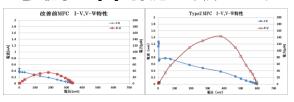


Fig.4 測定結果(比較)

考察 長期間の測定を行い、出力の向上がみられたが、当初予想していた、Type2の出力が Type3より低い結果となった. 要因として Type2のコロイドを作る際の酸化鉄と CNT の比率と、酸化鉄が CNT にうまく付着しなかったと考えた. しかし、酸化鉄をコロイド状にしたことによって、アノード電極付近に多くの微生物が集まり発電特性が向上したと考えた.

まとめ・今後の展望 3種類の酸化鉄コロイドを 作成し、MFCで長期間出力を保ち,発電すること を確認した.

今後、MFCで水素の生産を目指し、MFCのアノード側、カソード側それぞれどのようなガスが発生しているかを分析していく.

参考文献

- (1) 小原,井組,弦弓,高橋,本波,吉村「ソーラーハイドロジェンカーの新たな展開」第59回応物関係連合講演会 講演予稿集(2012春) 18a-GP2-1
- (2) 倉嶋,高橋,小原「CNT を用いた微生物燃料電池の試作」第62回 春季学術講演会(2015 春) 11a-P1-15