Electrical control of magnetism in electric double layer capacitors with a Co electrode

平井 孝昌1, 大日方 絢1, 日比野 有岐1, 小山 知弘1, 三輪 一元2, 小野 新平2, 好田 誠3, 千葉 大地1 (1. 東大物工、2. 電中研、3. 東北大工)

Takamasa Hirai1, AyaObinata1, Yuki Hibino1, Tomohiro Koyama1, Kazumoto Miwa2, Shimpei Ono2, Makoto Kohda3, Daichi Chiba1 (1. The Univ. of Tokyo, 2. CRIEPI, 3. Tohoku Univ.)
E-mail: thirai@cblb.t.u-tokyo.ac.jp

Recently, electric field effect on magnetism has been intensively studied. We have reported the change in Curie temperature by applying gate voltage V_G in solid state or electric double layer (EDL) capacitors with a Co electrode [1,2]. One of main factors for this effect has been considered to be a modification of electron density by an electric field application. Other mechanisms (e.g. redox) have been recently suggested and become controversial. In this presentation, the electric field effects on magnetism in EDL capacitors with a Co electrode will be discussed and the results will be compared with intentionally oxidized Co films by an oxygen plasma ashing.

Ta(3 nm)/Pt(3)/Co(1)/MgO(2) structure from the substrate side was deposited on Si or GaAs substrate by rf sputtering. The as-deposited sample showed in-plane magnetic anisotropy (IMA) at 300 K, whereas the sample after oxygen plasma ashing at 150 W for 30 s had perpendicular magnetic anisotropy (PMA). By X-ray photoelectron spectroscopy, ~50% of Co was confirmed to be oxidized by this ashing process.

To form EDL capacitors, a polymer film containing ionic liquid (TMPA$^+$-TFSI$^-$) and having Au top electrode was directly put on the as-deposited sample. The magnetic properties were measured using the anomalous Hall effect or SQUID magnetometer. Figure 1 shows hysteresis curves under applying various V_G observed in the Hall resistances. Each measurement was started 20 min after changing V_G at 300 K. IMA at $V_G = 0$ V was slightly enhanced by positive V_G application (+2 V), which corresponds to the direction of the increase of the electron density, whereas PMA was observed when negative V_G (-2 V) was applied. The IMA has slightly restored by an additional positive V_G application but not completely come back.

The comparison between ashing and electric field experiments suggests that the Co layer was oxidized by negative V_G and its activation energy is lower than that of the reduction reaction.

This work was supported by Grant-in-aid for Scientific Research (S) from JSPS.

Fig.1 Magnetic hysteresis loops obtained under various V_G.