Laser-induced spin precessional dynamics in CoFeB/MgO/CoFeB magnetic tunnel junction under the electric field

Y. Sasaki¹, K. Z. Suzuki², S. Iihama¹, A. Sugihara², Y. Ando¹, and S. Mizukami²
(¹Tohoku Univ., ²WPI-AIMR)
E-mail: sasaki2100@mlab.apph.tohoku.ac.jp

Voltage control of magnetic anisotropy (VCMA) attracted much attention as a magnetization reversal technique more efficient than spin-transfer-torque in magnetoresistive random access memory (MRAM) using a material with large perpendicular magnetic anisotropy (PMA) [1] [2]. Since spin precessional frequency f becomes very high, the evaluation of magnetic anisotropy using microwave-ferromagnetic resonance (FMR) is difficult for films which have a large magnetic anisotropy. Here we investigated the spin precessional dynamics using all-optical time-resolved magneto-optical Kerr effect (TRMOKE) in magnetic tunnel junction (MTJ) with perpendicularly magnetized CoFeB electrodes under the electric field E_{bias}.

The MTJ devices were fabricated using an ultra-high vacuum sputtering system and a standard microfabrication method. The stacked structure is Si/SiO₂/Ta(3.0)/Ru(5.0)/Co₂₀Fe₆₀B₂₀(3.0)/MgO(0.4)/MgO(2.0)/Co₂₀Fe₆₀B₂₀(1.4)/Ta(1.0)/Ru(4.0) (thickness in nm) on thermally oxidized Si substrate. The junction area was 10×10 ~ 30×30 µm². The In-Sn-oxide (ITO) was used for a top electrode materials. The MTJs were then annealed at 300°C in vacuum for one hour.

The optical set-up is shown schematically in the Fig. 1. An applied magnetic field of 3 kOe applied at fixed angle 83°. Pulsed laser beam was focused on the junction area of MTJ via the objective lens and spot-size was less than 1 µm in diameter. Spin precessional dynamics for the 1.4-nm-thick CoFeB layer was measured by TRMOKE. Figure 2 shows the power spectrum density of f with various E_{bias}. The peaks correspond to the FMR modes and their frequencies increased with increasing E_{bias}, from which the efficiency of VCMA was estimated to 22 fJ/Vm.

This work was supported by KAKENHI Nano Spin Conversion Science (No. 26103004), ImPACT, and Asahi Grass Foundation. Y.S thanks to the GP spin program.

Fig. 1 (a) Schematic illustration of optical set-up for TRMOKE microscope measurement (b) the power spectrum of TRMOKE with various electric field E_{bias}.

© 2016年 応用物理学会 10000000-102