Voltage modulation of interfacial Dzyaloshinskii-Moriya interaction on Fe|MgO ^o縄岡 孝平¹、三輪 真嗣¹、塩田 陽一^{1,2}、野崎 隆行²、湯浅 新治²、水落 憲和¹、鈴木 義茂¹ (1 阪大院基礎工、2 産総研ナノスピン)

Kohei Nawaoka¹, Shinji Miwa¹, Yoichi Shiota^{1,2}, Takayuki Nozaki², Shinji Yuasa², Norikazu Mizuochi¹, Yoshishige Suzuki¹ (1 Osaka Univ., 2 AIST) E-mail: nawaoka@spin.mp.es.osaka-u.ac.jp

Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction. The DMI changes magnetism drastically and is voltage controllable [1]. Up to now, this voltage modulation of DMI has been studied in multiferroic materials. Recently, interfacial DMI was reported in spin-wave research on W/Fe[2], but its voltage modulation has never been reported yet. In this research, we demonstrated the voltage modulation of interfacial DMI in spin wave devices.

Fe|MgO-based single crystalline multilayer was prepared by molecular beam epitaxy on MgO substrate. Figure 1 is the schematic image of a spin-wave device and measurement circuit. Two micro-antennae with vector network analyzer (VNA) were employed to generate and detect the spin-waves. By applying external magnetic field normal to the spin-wave propagation direction, magnetostatic surface spin-wave has been employed to characterize the voltage controlled magnetic anisotropy and interfacial DMI. Spin-wave signal was modulated by external voltage. We found that the voltage modulation was explained by the resonant frequency shift [3]. Figure 2 shows relation between their frequency shift of S_{21} (S_{12}) and external voltage as black (blue) circles. Their slopes were estimated to be δf_{21} =0.032±0.01 and δf_{12} =0.028±0.01 (MHz/V), respectively. The frequency shift can be mainly explained by voltage controlled magnetic anisotropy, in addition, the distinct difference between the δf_{21} and the δf_{12} shows the voltage controlled interfacial DMI at Fe|MgO. [3] In the presentation, the effect of the Pt-atomic-layer insertion at the Fe|MgO interface will be also discussed.

This work was funded by ImPACT Program and the Grant-in-Aid for Scientific Research (S).

b

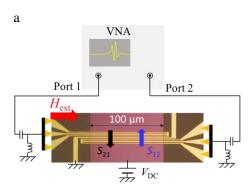


Figure 1 Measurement set up and spin-wave device

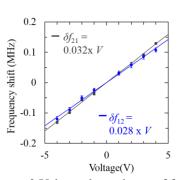


Figure 2 Voltage dependence of freq. shift

[2] K. Zakeri, et al., PRL. 104, 137203 (2010).

^[1] H. Katsura, et al., PRL. 95, 057205 (2005).

^[3] K. Nawaoka, et al., APEX, 8, 063004(2015).